Isomorphism of chordal (6, 3) graphs

A graph is chordal if it contains no chordless cycles of length at least four and (q, t) if no set of at mostq vertices induces more thant paths of length three. It is known that the isomorphism problem is isomorphism complete for chordal graphs and for (6, 3) graphs. We present polynomial methods to determine the automorphism partition and to test isomorphism of graphs which are both chordal and (6, 3). The approach is based on the study of simplicial partitions of chordal graphs. It is proved that for chordal (6, 3) graphs the automorphism partition coincides with the coarsest regular simplicial partition. This yields anO(n+m logn) isomorphism test.ZusammenfassungEin Graph ist chordal, wenn er keine sehnenlosen Kreise der Länge mindestens vier enthält und (q, t), wenn keine Menge von höchstensq Knoten mehr alst Wege der Länge drei induziert. Es ist bekannt, daß das Isomorphieproblem für chordale Graphen und für (6, 3) Graphen Isomorphie-vollständig ist. Wir stellen polynomiale Verfahren vor zur Bestimmung der Automorphiepartition und zum Testen der Isomorphie von Graphen, die sowohl chrodal als auch (6, 3) sind. Der zugang basiert auf dem Studium von simplizialen Partitionen von chordalen Graphen. Es wird gezeigt, daß für chordale (6, 3) Graphen die Automorphiepartition mit der gröbsten regulären simplizialen Partition übereinstimmt. Dies führt zu einemO(n+m logn) isomorphietest.

[1]  Gottfried Tinhofer,et al.  Graph isomorphism and theorems of Birkhoff type , 1986, Computing.

[2]  D. Corneil,et al.  Isomorphism Testing in Hookup Classes , 1982 .

[3]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[4]  S. Olariu,et al.  P4‐Reducible Graphs—Class of Uniquely Tree‐Representable Graphs , 1989 .

[5]  Stephan Olariu,et al.  A tree representation for P4-sparse graphs , 1992, Discret. Appl. Math..

[6]  Kellogg S. Booth,et al.  A Linear Time Algorithm for Deciding Interval Graph Isomorphism , 1979, JACM.

[7]  Charles J. Colbourn,et al.  On testing isomorphism of permutation graphs , 1981, Networks.

[8]  Gottfried Tinhofer,et al.  A note on compact graphs , 1991, Discret. Appl. Math..

[9]  Stephan Olariu,et al.  On the Isomorphism of Graphs with Few P4s , 1995, WG.

[10]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[11]  David M. Mount,et al.  Isomorphism of graphs with bounded eigenvalue multiplicity , 1982, STOC '82.

[12]  Gottfried Tinhofer,et al.  Direct Path Graph Isomorphism (Extended Abstract) , 1994, WG.

[13]  Gottfried Tinhofer,et al.  Directed path graph isomorphism , 1994 .

[14]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[15]  Robert E. Tarjan,et al.  Isomorphism of Planar Graphs , 1972, Complexity of Computer Computations.

[16]  Max Fontet A Linear Algorithm for Testing Isomorphism of Planar Graphs , 1976, ICALP.

[17]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[18]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[19]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[20]  Gottfried Tinhofer,et al.  Strong tree-cographs are birkhoff graphs , 1989, Discret. Appl. Math..

[21]  S. Olariu,et al.  A New Class of Brittle Graphs , 1989 .

[22]  Eugene M. Luks Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time , 1980, FOCS.