Numerical analysis and design of satellite constellations for above the horizon coverage

[1]  Francisco R. Feito-Higueruela,et al.  A new algorithm for computing Boolean operations on polygons , 2009, Comput. Geosci..

[2]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[3]  D. H. Martin The essence of invexity , 1985 .

[4]  Bala R. Vatti A generic solution to polygon clipping , 1992, CACM.

[5]  L. Rider,et al.  Circular polar constellations providing continuous single or multiple coverage above a specified latitude , 1987 .

[6]  D. Beste Design of Satellite Constellations for Optimal Continuous Coverage , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[8]  Borut Zalik,et al.  An algorithm for polygon clipping, and for determining polygon intersections and unions , 2007, Comput. Geosci..

[9]  J. Hanson,et al.  Improved low-altitude constellation design methods , 1989 .

[10]  Günther Greiner,et al.  Efficient clipping of arbitrary polygons , 1998, TOGS.

[11]  L. Rider Design Of Low To Medium Altitude Surveillance Systems Providing Continuous Multiple Above-The-Horizon Viewing , 1989 .

[12]  K. Gordon The computation of satellite constellation range characteristics , 1994 .

[13]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[14]  L. Rider Optimal Orbital Constellations For Global Viewing Of Targets Against A Space Background , 1980 .

[15]  Kevin Weiler Polygon comparison using a graph representation , 1980, SIGGRAPH '80.

[16]  J. Walker Some circular orbit patterns providing continuous whole earth coverage. , 1970 .

[17]  J G Walker,et al.  Continuous Whole-Earth Coverage by Circular-Orbit Satellite Patterns , 1977 .