State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convection.

Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  Eberhard Bodenschatz,et al.  Recent Developments in Rayleigh-Bénard Convection , 2000 .

[3]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[4]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[5]  Edward Ott,et al.  Estimating the State of Large Spatio-Temporally Chaotic Systems: Application to a Rayleigh-Benard Convection Experiment , 2004 .

[6]  F. Busse,et al.  Non-linear properties of thermal convection , 1978 .

[7]  The spatio-temporal structure of spiral-defect chaos , 1996, chao-dyn/9604013.

[8]  F. Tito Arecchi,et al.  PATTERN FORMATION AND COMPETITION IN NONLINEAR OPTICS , 1999 .

[9]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[10]  Ilarion V. Melnikov,et al.  Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection , 2000, Nature.

[11]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[12]  L. Tuckerman Divergence-free velocity fields in nonperiodic geometries , 1989 .

[13]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[14]  D. Cannell,et al.  Physical optics treatment of the shadowgraph , 2002 .

[15]  B R Hunt,et al.  Local low dimensionality of atmospheric dynamics. , 2001, Physical review letters.

[16]  Akademii︠a︡ nauk Sssr,et al.  Waves and patterns in chemical and biological media , 1991 .

[17]  I. Rehberg,et al.  The shadowgraph method in convection experiments , 1989 .

[18]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[19]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[20]  Morris,et al.  Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. , 1993, Physical review letters.

[21]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[22]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[23]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[24]  M. Cross,et al.  Mean flow and spiral defect chaos in Rayleigh-Bénard convection. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.