Beyond pressure stabilization: A low‐order local projection method for the Oseen equation

This work proposes a new local projection stabilized finite element method (LPS) for the Oseen problem. The method adds to the Galerkin formulation new fluctuation terms that are symmetric and easily computable at the element level. Proposed for the pair ℙ1/ℙl, l = 0, 1, when the pressure is continuously or discontinuously approximated, well-posedness and error optimality are proved. In addition, we introduce a cheap strategy to recover an element-wise mass conservative velocity field in the discontinuous pressure case, a property usually neglected in the stabilized finite element context. Numerics validate the theoretical results and show that the present method improves accuracy to represent boundary layers when compared with alternative approaches.

[1]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[2]  R. Codina Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales , 2008 .

[3]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[4]  Yinnian He,et al.  Stabilized multiscale finite element method for the stationary Navier–Stokes equations☆ , 2009 .

[5]  Yinnian He,et al.  A stabilized finite element method based on local polynomial pressure projection for the stationary Navier--Stokes equations , 2008 .

[6]  Gert Lube,et al.  RESIDUAL-BASED STABILIZED HIGHER-ORDER FEM FOR A GENERALIZED OSEEN PROBLEM , 2006 .

[7]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[8]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[9]  Lutz Tobiska,et al.  Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations , 1996 .

[10]  C. Dohrmann,et al.  A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .

[11]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[12]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[13]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[14]  Frédéric Valentin,et al.  On a Residual Local Projection Method for the Darcy Equation , 2009 .

[15]  Gunar Matthies,et al.  Local projection stabilization of equal order interpolation applied to the Stokes problem , 2008, Math. Comput..

[16]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[17]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[18]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[19]  Frédéric Valentin,et al.  Consistent Local Projection Stabilized Finite Element Methods , 2010, SIAM J. Numer. Anal..

[20]  Frédéric Valentin,et al.  A residual local projection method for the Oseen equation , 2010 .

[21]  Frédéric Valentin,et al.  A Petrov-Galerkin enriched method : A mass conservative finite element method for the Darcy equation , 2007 .