Polynomial-Time Factorization of Multivariate Polynomials over Finite Fields

We present a probabilistic algorithm that finds the irreducible factors of a bivariate polynomial with coefficients from a finite field in time polynomial in the input size, i.e. in the degree of the polynomial and log (cardinality of field). The algorithm generalizes to multivariate polynomials and has polynomial running time for densely encoded inputs. Also a deterministic version of the algorithm is discussed whose running time is polynomial in the degree of the input polynomial and the size of the field.

[1]  D. Musser Algorithms for polynomial factorization. , 1971 .

[2]  J. von zur Gathen Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[3]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[4]  Erich Kaltofen,et al.  A polynomial-time reduction from bivariate to univariate integral polynomial factorization , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[5]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[6]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[7]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[8]  Donald Ervin Knuth,et al.  The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .

[9]  W. S. Brown On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.

[10]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[11]  E. Berlekamp Factoring polynomials over large finite fields* , 1971, SYMSAC '71.

[12]  James H. Davenport,et al.  Factorization over finitely generated fields , 1981, SYMSAC '81.

[13]  Erich Kaltofen,et al.  A polynomial reduction from multivariate to bivariate integral polynomial factorization. , 1982, STOC '82.

[14]  J. Gathen Hensel and Newton methods in valuation rings , 1984 .

[15]  Joachim von zur Gathen Parallel algorithms for algebraic problems , 1983, STOC '83.

[16]  Pierre Samuel,et al.  Algebraic theory of numbers , 1971 .

[17]  Arjen K. Lenstra,et al.  Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..

[18]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[19]  H. Schönemann,et al.  Grundzüge einer allgemeinen Theorie der höhern Congruenzen, deren Modul eine reelle Primzahl ist. , 2022 .

[20]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[21]  Abraham Lempel,et al.  On the Complexity of Multiplication in Finite Fields , 1983, Theor. Comput. Sci..

[22]  Joachim von zur Gathen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..