On the ´ Etale Cohomology of Algebraic Varieties with Totally Degenerate Reduction over p-adic Fields to J. Tate

Let K be a field of characteristic zero that is com- plete with respect to a discrete valuation, with perfect residue field of characteristic p> 0. We formulate the notion of totally degenerate reduction for a smooth projective variety X over K. We show that for all prime numbers � , the Q-´ etale cohomology of such a variety is (after passing to a suitable finite unramified extension of K) a suc- cessive extension of direct sums of Galois modules of the form Q(r). More precisely, this cohomology has an increasing filtration whose r-th graded quotient is of the form V ⊗Q Q(r), where V is a finite dimen- sional Q-vector space that is independent of � , with an unramified action of the absolute Galois group of K.

[1]  U. Hartl On period spaces for p-divisible groups , 2007, 0709.3444.

[2]  Kazuya Kato,et al.  L-Functions and Tamagawa Numbers of Motives , 2007 .

[3]  W. Raskind,et al.  ON p-ADIC INTERMEDIATE JACOBIANS , 2006, math/0601401.

[4]  Tetsushi Ito Weight-monodromy conjecture for p-adically uniformized varieties , 2003, math/0301201.

[5]  W. Raskind A generalized Hodge-Tate conjecture for algebraic varieties with totally degenerate reduction over p -adic fields , 2005 .

[6]  E. D. Shalit The p-adic monodromy-weight conjecture for p-adically uniformized varieties , 2004, Compositio Mathematica.

[7]  J. Brasselet Introduction to toric varieties , 2004 .

[8]  U. Hartl Semi-stability and base change , 2001 .

[9]  Amnon Besser,et al.  A generalization of Coleman’s p-adic integration theory , 2000 .

[10]  Chikara Nakayama Degeneration of l-adic weight spectral sequences , 2000 .

[11]  Klaus Künnemann Algebraic cycles on toric fibrations over abelian varieties , 1999 .

[12]  Ib Madsen,et al.  On the K-theory of local fields , 1999, math/9910186.

[13]  Takeshi Tsuji p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case , 1999 .

[14]  Y. Varshavsky p-adic uniformization of unitary Shimura varieties , 1998 .

[15]  Klaus Künnemann Projective regular models for abelian varieties, semistable reduction, and the height pairing , 1998 .

[16]  C. Consani Double Complexes and Euler L-Factors , 1998, Compositio Mathematica.

[17]  S. Yau,et al.  Local behavior of Hodge structures at infinity , 1997 .

[18]  A. J. Jong,et al.  Smoothness, semi-stability and alterations , 1996 .

[19]  W. Raskind Higher $l$-adic Abel-Jacobi mappings and filtrations on Chow groups , 1994, alg-geom/9412001.

[20]  W. Fulton,et al.  Intersection Theory on Spherical Varieties , 1994 .

[21]  A. Mokrane La suite spectrale des poids en cohomologie de Hyodo-Kato , 1993 .

[22]  G. Ellingsrud,et al.  Towards the Chow ring of the Hilbert scheme of P2. , 1993 .

[23]  Y. Manin,et al.  Three-dimensional hyperbolic geometry as ∞-adic Arakelov geometry , 1991 .

[24]  F. Guillén,et al.  Sur le théorème local des cycles invariants , 1990 .

[25]  U. Jannsen Mixed Motives and Algebraic K-Theory , 1990 .

[26]  L. Illusie Cohomologie de de Rham et cohomologie étale p-adique [d'après G. Faltings, J.-M. Fontaine et al.] , 1990 .

[27]  Jean-Pierre Serre,et al.  Abelian L-adic representation and elliptic curves , 1989, Advanced book classics.

[28]  U. Jannsen On the ℓ-adic cohomology of varieties over number fields and its Galois cohomology , 1989 .

[29]  Osamu Hyodo A note onp-adic etale cohomology in the semi-stable reduction case , 1988 .

[30]  G. Faltings Crystalline cohomology and p-adic Galois-representations , 1988 .

[31]  G. Faltings p-adic Hodge theory , 1988 .

[32]  S. Bloch,et al.  p-Adic etale cohomology , 1986 .

[33]  S. Bloch Algebraic cycles and values of L-functions. , 1984 .

[34]  T. Zink Uber die schlechte Reduktion einiger Shimuramannigfaltigkeiten , 1981 .

[35]  P. Deligne,et al.  La Conjecture de Weil. II , 1980 .

[36]  R. Langlands Sur la mauvaise r'eduction d''une vari'et'e de Shimura , 1979 .

[37]  V. Danilov,et al.  THE GEOMETRY OF TORIC VARIETIES , 1978 .

[38]  G. A. Mustafin ON NON-ARCHIMEDEAN UNIFORMIZATION , 1978 .

[39]  J. Steenbrink Limits of Hodge structures , 1976 .

[40]  P. Deligne La conjecture de Weil. I , 1974 .

[41]  V. Drinfeld,et al.  Periods of p-adic Schottky groups. , 1973 .

[42]  David Mumford,et al.  An analytic construction of degenerating curves over complete local rings , 1972 .

[43]  D. Mumford An analytic construction of degenerating abelian varieties over complete rings , 1971 .

[44]  P. Deligne Theorie de Hodge I , 1970 .

[45]  Phillip A. Griffiths,et al.  On the Periods of Certain Rational Integrals: II , 1969 .

[46]  A. Grothendieck Hodge's general conjecture is false for trivial reasons , 1969 .

[47]  D. Lieberman On higher Picard varieties , 1968 .

[48]  A. Weil On Picard Varieties , 1952 .

[49]  A. Weil Foundations of Algebraic Geometry , 1946 .

[50]  A. Grothendieck,et al.  L-Functions and Tamagawa Numbers of Motives , 2022 .