model species for the of the Colorado

failed to control L . decemlineata within the first year of release regional populations of L . decemlineata have demonstrated the ability to independently evolve resistance to pesticides and to do so at different rates 37 . Previous studies have identified target site mutations in resistance phenotypes and a wide range of genes involved in metabolic detoxification, including carboxylesterase genes, cytochrome P450s, and glutathione S-transferase genes 38–42 To examine evidence of rapid evolutionary change underlying . decemlineata ’s extraordinary success uti- lizing novel host plants, climates, and detoxifying insecticides, we evaluated decemlineata nicotinic acetylcholine receptors (nAChRs), the γ -amino butyric acid (GABA)-gated anion channels and the histamine-gated chloride channels (HisCls), cuticular proteins, cytochrome P450 monooxygenases (CYPs), and the Glutathione S-transferases (GSTs). CYP12J4. in CYP4, CYP6, and CYP9 to in detoxification of plant allelochemicals resistance pesticides their constitutive overexpression and/or inducible expression in imidacloprid resistant L decemlineata 48,130 in to insecticide in L . decemlineata T . castaneum other beetles. Population genetic analyses suggest high levels of nucleotide diversity, local geographic structure, and evidence of recent population growth, which helps to explain how L . decemlineata rapidly evolves to exploit novel host plants, climate space, and overcome a range of pest management practices (including a large and diverse number of insecticides). Digestive enzymes, in particular the cysteine peptidases and carbohydrate-active enzymes, show evidence of gene expansion and elevated expression in gut tissues, suggesting the diversity of the genes is a key trait in the beetle’s phytophagous lifestyle. Additionally, expansions of the gustatory receptor subfamily for bitter tasting might be a key adaptation to exploiting hosts in the nightshade family, Solanaceae, while expansions of novel subfamilies of CYP and GST proteins are consistent with rapid, lineage-specific turnover of genes implicated in L . decemlineata ’s capacity for insecticide resistance. Finally, L . decemlineata has interesting duplications in RNAi genes that might increase its sensitivity to RNAi and provide a promising new avenue for pesticide development. The L . decemlineata genome promises new opportunities to investigate the ecology, evo- lution, and management of this species, and to leverage genomic technologies in developing sustainable methods of pest control.

[1]  Victor M. Izzo,et al.  Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). , 2018, Journal of economic entomology.

[2]  C. Montell,et al.  Unconventional Roles of Opsins. , 2017, Annual review of cell and developmental biology.

[3]  Mark Blaxter,et al.  BlobTools: Interrogation of genome assemblies , 2017, F1000Research.

[4]  Victor M. Izzo,et al.  Origin of pest lineages of the Colorado potato beetle, Leptinotarsa decemlineata , 2017, bioRxiv.

[5]  Yolanda H. Chen,et al.  Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. , 2017, Current opinion in insect science.

[6]  B. Charlesworth,et al.  Estimating the parameters of background selection and selective sweeps in Drosophila in the presence of gene conversion , 2017, Proceedings of the National Academy of Sciences.

[7]  Camilla R. Sharkey,et al.  Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles , 2017, Scientific Reports.

[8]  Evgeny M. Zdobnov,et al.  Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface , 2016, Genome Biology.

[9]  S. R. Palli,et al.  RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. , 2016, Insect biochemistry and molecular biology.

[10]  Guo-Qing Li,et al.  Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides. , 2016, Pesticide biochemistry and physiology.

[11]  Andrew J. Rosendale,et al.  Mechanistic underpinnings of dehydration stress in the American dog tick revealed through RNA-Seq and metabolomics , 2016, Journal of Experimental Biology.

[12]  G. Edgecombe,et al.  FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE , 2016, bioRxiv.

[13]  I. Williams,et al.  Phenology and overwintering of the Colorado potato beetle Leptinotarsa decemlineata Say in 2008–2015 in Estonia , 2016 .

[14]  Leszek P. Pryszcz,et al.  Redundans: an assembly pipeline for highly heterozygous genomes , 2016, Nucleic Acids Research.

[15]  S. R. Palli,et al.  A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s , 2016, Scientific Reports.

[16]  L. Aravind,et al.  Transcription factors, chromatin proteins and the diversification of Hemiptera. , 2016, Insect biochemistry and molecular biology.

[17]  Q. Lan,et al.  Characterizing Molecular Mechanisms of Imidacloprid Resistance in Select Populations of Leptinotarsa decemlineata in the Central Sands Region of Wisconsin , 2016, PloS one.

[18]  Susan J. Brown,et al.  The Genome and Methylome of a Beetle with Complex Social Behavior, Nicrophorus vespilloides (Coleoptera: Silphidae) , 2015, Genome biology and evolution.

[19]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[20]  Stuart M. Brown,et al.  Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei , 2015, Scientific Reports.

[21]  Kaiyun Fu,et al.  Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin. , 2015, Pesticide biochemistry and physiology.

[22]  Tandy J. Warnow,et al.  ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes , 2015, Bioinform..

[23]  Ralf Nauen,et al.  IRAC: Mode of action classification and insecticide resistance management. , 2015, Pesticide biochemistry and physiology.

[24]  M. Göpfert,et al.  TRP Channels in Insect Stretch Receptors as Insecticide Targets , 2015, Neuron.

[25]  A. Aharoni,et al.  The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. , 2015, Phytochemistry.

[26]  Tandy J. Warnow,et al.  PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences , 2015, J. Comput. Biol..

[27]  Kaiyun Fu,et al.  Knockdown of a putative alanine aminotransferase gene affects amino acid content and flight capacity in the Colorado potato beetle Leptinotarsa decemlineata , 2015, Amino Acids.

[28]  R. Bock,et al.  Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids , 2015, Science.

[29]  Mihai Albu,et al.  C2H2 zinc finger proteins greatly expand the human regulatory lexicon , 2015, Nature Biotechnology.

[30]  B. Oppert,et al.  Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum , 2015, BMC Genomics.

[31]  L. Lindström,et al.  Latitudinal differences in diapause related photoperiodic responses of European Colorado potato beetles (Leptinotarsa decemlineata) , 2015, Evolutionary Ecology.

[32]  Jürgen Gadau,et al.  Transposable element islands facilitate adaptation to novel environments in an invasive species , 2014, Nature Communications.

[33]  Jose Lugo-Martinez,et al.  Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies , 2014, PLoS Comput. Biol..

[34]  Evgeny M. Zdobnov,et al.  OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software , 2014, Nucleic Acids Res..

[35]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[36]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[37]  Kevin R. Thornton,et al.  Gene Expression Variation in Drosophila melanogaster Due to Rare Transposable Element Insertion Alleles of Large Effect , 2014, Genetics.

[38]  Gary Moore,et al.  The i5k Workspace@NAL—enabling genomic data access, visualization and curation of arthropod genomes , 2014, Nucleic Acids Res..

[39]  R. ffrench-Constant,et al.  Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles. , 2014, Insect biochemistry and molecular biology.

[40]  L. Lindström,et al.  Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle ( Leptinotarsa decemlineata ) , 2014 .

[41]  Victor M. Izzo,et al.  Variation in host usage among geographic populations of Leptinotarsa decemlineata, the Colorado potato beetle , 2014, Journal of Pest Science.

[42]  Jinjun Wang,et al.  Multiple glutathione S-transferase genes: identification and expression in oriental fruit fly, Bactrocera dorsalis. , 2014, Pest management science.

[43]  L. Lindström,et al.  Sequencing, De Novo Assembly and Annotation of the Colorado Potato Beetle, Leptinotarsa decemlineata, Transcriptome , 2014, PloS one.

[44]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[45]  J. Carlson,et al.  Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle , 2013, BMC Genomics.

[46]  R. ffrench-Constant,et al.  Colorado potato beetle (Coleoptera) gut transcriptome analysis: expression of RNA interference‐related genes , 2013, Insect molecular biology.

[47]  Wen-chao Guo,et al.  Identification of cytochrome P450 monooxygenase genes and their expression profiles in cyhalothrin-treated Colorado potato beetle, Leptinotarsa decemlineata. , 2013, Pesticide biochemistry and physiology.

[48]  Philipp W. Messer,et al.  Population genomics of rapid adaptation by soft selective sweeps. , 2013, Trends in ecology & evolution.

[49]  D. Ray,et al.  Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera , 2013, Mobile DNA.

[50]  Guo-Qing Li,et al.  RNA interference of a putative S-adenosyl-L-homocysteine hydrolase gene affects larval performance in Leptinotarsa decemlineata (Say). , 2013, Journal of insect physiology.

[51]  I. Williams,et al.  Factors affecting development and overwintering of second generation Colorado Potato Beetle (Coleoptera: Chrysomelidae) in Estonia in 2010 , 2013 .

[52]  R. Benton,et al.  Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. , 2013, Insect biochemistry and molecular biology.

[53]  Monica C Munoz-Torres,et al.  Web Apollo: a web-based genomic annotation editing platform , 2013, Genome Biology.

[54]  Mira V. Han,et al.  Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. , 2013, Molecular biology and evolution.

[55]  B. Henrissat,et al.  Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes , 2013, Biotechnology for Biofuels.

[56]  I. Birol,et al.  ARTICLE TYPE , 2012 .

[57]  W. Leal,et al.  Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. , 2013, Annual review of entomology.

[58]  Marie-Claire Goulet,et al.  Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities. , 2012, Journal of proteome research.

[59]  D. Hawthorne,et al.  Multiple evolutionary origins of knockdown resistance (kdr) in pyrethroid-resistant Colorado potato beetle, Leptinotarsa decemlineata , 2012 .

[60]  B. Chénais,et al.  The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. , 2012, Gene.

[61]  M. Berenbaum,et al.  Evolutionary Toxicogenomics: Diversification of the Cyp12d1 and Cyp12d3 Genes in Drosophila Species , 2012, Journal of Molecular Evolution.

[62]  Runzhi Zhang,et al.  Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: dispersal, occurrence, and economic impact , 2012 .

[63]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[64]  Joseph K. Pickrell,et al.  Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data , 2012, PLoS genetics.

[65]  K. Gruden,et al.  A complex of genes involved in adaptation of Leptinotarsa decemlineata larvae to induced potato defense. , 2012, Archives of insect biochemistry and physiology.

[66]  T. Semashko,et al.  Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored-product pests. , 2012, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[67]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[68]  Olga Vasiljeva,et al.  Cysteine cathepsins: From structure, function and regulation to new frontiers , 2011, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.

[69]  J. Diaz‐ruiz,et al.  Contribution of Ldace1 gene to acetylcholinesterase activity in Colorado potato beetle. , 2011, Insect biochemistry and molecular biology.

[70]  K. Touhara,et al.  Sugar-regulated cation channel formed by an insect gustatory receptor , 2011, Proceedings of the National Academy of Sciences.

[71]  J. Dickens,et al.  Multimodal Stimulation of Colorado Potato Beetle Reveals Modulation of Pheromone Response by Yellow Light , 2011, PloS one.

[72]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[73]  T. Ketola,et al.  Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle. , 2011 .

[74]  Peter W. Jones,et al.  Bioactivities of glycoalkaloids and their aglycones from Solanum species. , 2011, Journal of agricultural and food chemistry.

[75]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[76]  S. R. Palli,et al.  Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. , 2011, Pest management science.

[77]  R. ffrench-Constant,et al.  Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes , 2010, PloS one.

[78]  E. Snell-Rood,et al.  Gene discovery in the horned beetle Onthophagus taurus , 2010, BMC Genomics.

[79]  K. Skryabin Do Russia and Eastern Europe need GM plants? , 2010, New biotechnology.

[80]  Ken Sasaki,et al.  Biogenic amines, caffeine and tonic immobility in Tribolium castaneum. , 2010, Journal of insect physiology.

[81]  Philipp W. Messer,et al.  Genome-Wide Patterns of Adaptation to Temperate Environments Associated with Transposable Elements in Drosophila , 2010, PLoS genetics.

[82]  J. Willis,et al.  Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. , 2010, Insect biochemistry and molecular biology.

[83]  R. L. Jacques,et al.  Colorado Potato Beetle, Leptinotarsa decemlineata (Say) and False Potato Beetle, Leptinotarsa juncta (Germar) (Insecta: Coleoptera: Chrysomelidae) , 2009, EDIS.

[84]  D. Petrov,et al.  The adaptive role of transposable elements in the Drosophila genome. , 2009, Gene.

[85]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[86]  J. Mappes,et al.  Cold tolerance during larval development: effects on the thermal distribution limits of Leptinotarsa decemlineata , 2009 .

[87]  M. Batzer,et al.  The impact of retrotransposons on human genome evolution , 2009, Nature Reviews Genetics.

[88]  M. Tominaga,et al.  Evolutionary conservation and changes in insect TRP channels , 2009, BMC Evolutionary Biology.

[89]  Ryan D. Hernandez,et al.  Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data , 2009, PLoS genetics.

[90]  J. Chambers,et al.  Immunological cost of chemical defence and the evolution of herbivore diet breadth. , 2009, Ecology letters.

[91]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[92]  Jérôme Casas,et al.  Variability in Sensory Ecology: Expanding the Bridge Between Physiology and Evolutionary Biology , 2009, The Quarterly Review of Biology.

[93]  Mikiko C. Siomi,et al.  The Discovery of Rna Interference (rnai) Biogenesis of Small Rnas on the Road to Reading the Rna-interference Code Insight Review , 2022 .

[94]  K. Mita,et al.  Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. , 2008, Insect biochemistry and molecular biology.

[95]  E. Liu,et al.  Evolution of the mammalian transcription factor binding repertoire via transposable elements. , 2008, Genome research.

[96]  Andrei Alyokhin,et al.  Colorado Potato Beetle Resistance to Insecticides , 2008, American Journal of Potato Research.

[97]  Chelsea J.-T. Ju,et al.  Examining the molecular interaction between potato (Solanum tuberosum) and Colorado potato beetle Leptinotarsa decemlineata , 2008 .

[98]  Y. Pelletier,et al.  Identification of potential detoxification enzyme genes in Leptinotarsa decemlineata (Say) and study of their expression in insects reared on different plants , 2008 .

[99]  C. Nusbaum,et al.  ALLPATHS: de novo assembly of whole-genome shotgun microreads. , 2008, Genome research.

[100]  Peer Bork,et al.  The Genome of the Model Beetle and Pest Tribolium Castaneum Vertebrate-specific Orthologues Insect-specific Orthologues Homology Undetectable Similarity , 2022 .

[101]  Andrew K. Jones,et al.  The cys-loop ligand-gated ion channel gene superfamily of the nematode, Caenorhabditis elegans , 2008, Invertebrate Neuroscience.

[102]  Yoshiaki Tanaka,et al.  A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum , 2008, Frontiers in Neuroendocrinology.

[103]  Elizabeth C. McDonald,et al.  Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum , 2007, Frontiers in Zoology.

[104]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[105]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[106]  Geert Plaetinck,et al.  Control of coleopteran insect pests through RNA interference , 2007, Nature Biotechnology.

[107]  Christian Biémont,et al.  Genetics: Junk DNA as an evolutionary force , 2006, Nature.

[108]  P. Pelosi,et al.  Soluble proteins in insect chemical communication , 2006, Cellular and Molecular Life Sciences CMLS.

[109]  M. Chye,et al.  Serine proteinase inhibitor proteins: Exogenous and endogenous functions , 2006, In Vitro Cellular & Developmental Biology - Plant.

[110]  P. Fields,et al.  Winter climates and coldhardiness in terrestrial insects , 2005 .

[111]  J. Mappes,et al.  The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations , 2005, Molecular ecology.

[112]  Benedict M. Sattelle,et al.  Insect GABA Receptors: Splicing, Editing, and Targeting by Antiparasitics and Insecticides , 2005, Molecular Pharmacology.

[113]  Thomas Patrick Kuhar,et al.  The Colorado Potato Beetle , 2005, Nature.

[114]  G. Le Goff,et al.  Resistance to fipronil in Drosophila simulans: influence of two point mutations in the RDL GABA receptor subunit , 2005, Journal of neurochemistry.

[115]  F. Simard,et al.  Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors. , 2004, The American journal of tropical medicine and hygiene.

[116]  C. Segarra,et al.  Genome Size and Chromosomal Evolution in Leaf Beetles (Coleoptera, Chrysomelidae) , 2004 .

[117]  Christine A. Armer Colorado Potato Beetle Toxins Revisited: Evidence the Beetle Does Not Sequester Host Plant Glycoalkaloids , 2004, Journal of Chemical Ecology.

[118]  K. Gruden,et al.  Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases. , 2004, Insect biochemistry and molecular biology.

[119]  J. Bloomquist Chloride channels as tools for developing selective insecticides. , 2003, Archives of insect biochemistry and physiology.

[120]  J. Carlson,et al.  Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Dixie L Mager,et al.  Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. , 2003, Trends in genetics : TIG.

[122]  K. Gaston Ecology: The how and why of biodiversity , 2003, Nature.

[123]  K. Gruden,et al.  Diverse Enzymatic Specificities of Digestive Proteases, 'Intestains', Enable Colorado Potato Beetle Larvae to Counteract the Potato Defence Mechanism , 2003, Biological chemistry.

[124]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[125]  R. ffrench-Constant,et al.  A Single P450 Allele Associated with Insecticide Resistance in Drosophila , 2002, Science.

[126]  S. Takahashi,et al.  Novel cysteine proteinase inhibitors homologous to the proregions of cysteine proteinases. , 2002, Current protein & peptide science.

[127]  T. Roeder Biochemistry and molecular biology of receptors for biogenic amines in locusts , 2002, Microscopy research and technique.

[128]  C. Aquadro,et al.  Genome-wide variation in the human and fruitfly: a comparison. , 2001, Current opinion in genetics & development.

[129]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[130]  F. Gould,et al.  Genetic analysis of larval survival and larval growth of two populations of Leptinotarsa decemlineata on tomato , 2001 .

[131]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[132]  D. Brömme,et al.  TIN-ag-RP, a novel catalytically inactive cathepsin B-related protein with EGF domains, is predominantly expressed in vascular smooth muscle cells. , 2001, Biochemistry.

[133]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[134]  K. Gruden,et al.  The cysteine protease activity of Colorado potato beetle (Leptinotarsa decemlineata Say) guts, which is insensitive to potato protease inhibitors, is inhibited by thyroglobulin type-1 domain inhibitors. , 1998, Insect biochemistry and molecular biology.

[135]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[136]  E. Grafius Economic impact of insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae) on the Michigan Potato Industry , 1997 .

[137]  Urs A. Meyer,et al.  Overview of enzymes of drug metabolism , 1996, Journal of Pharmacokinetics and Biopharmaceutics.

[138]  M. Jongsma,et al.  Colorado potato beetles (leptinotarsa decemlineata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate , 1995 .

[139]  R. ffrench-Constant,et al.  Drosophilaγ‐Aminobutyric Acid Receptor Gene Rdl Shows Extensive Alternative Splicing , 1993 .

[140]  R. ffrench-Constant,et al.  Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[141]  W. S. Sheppard,et al.  Mitochondrial DNA variation in geographic populations of Colorado potato beetle,Leptinotarsa decemlineata (Coleoptera; Chrysomelidae) , 1991, Experientia.

[142]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[143]  W. Tingey,et al.  Host acceptance behaviour of Colorado potato beetle larvae influenced by potato glandular trichomes , 1988 .

[144]  R. L. Jacques The Potato Beetles , 1988 .

[145]  L. Murdock,et al.  Suppression of larval Colorado potato beetle growth and development by digestive proteinase inhibitors , 1987 .

[146]  J. Daniel Hare,et al.  GENETIC VARIATION IN PLANT‐INSECT ASSOCIATIONS: SURVIVAL OF LEPTINOTARSA DECEMLINEATA POPULATIONS ON SOLANUM CAROLINENSE , 1986, Evolution; international journal of organic evolution.

[147]  C. Hsiao,et al.  Chromosomal analysis of Leptinotarsa and Labidomera species (Coleoptera: Chrysomelidae) , 1983, Genetica.

[148]  T. Hsiao HOST PLANT ADAPTATIONS AMONG GEOGRAPHIC POPULATIONS OF THE COLORADO POTATO BEETLE , 1978 .

[149]  G. Fraenkel,et al.  Properties of leptinotarsin. A toxic hemolymph protein from the Colorado potato beetle. , 1969, Toxicon : official journal of the International Society on Toxinology.

[150]  Q. Lan,et al.  RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata. , 2017, Pesticide biochemistry and physiology.

[151]  B. Nilius,et al.  TRP channels. , 2012, Comprehensive Physiology.

[152]  Andrew K. Jones,et al.  Diversity of insect nicotinic acetylcholine receptor subunits. , 2010, Advances in experimental medicine and biology.

[153]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[154]  E. Grafius,et al.  Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). , 2006, Pest management science.

[155]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[156]  International Chicken Polymorphism Map Consortium Explorer A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms , 2012 .

[157]  L. Chittka,et al.  The evolution of color vision in insects. , 2001, Annual review of entomology.

[158]  F. Ortego,et al.  Characterization and distribution of chymotrypsin‐like and other digestive proteases in Colorado potato beetle larvae , 1997 .

[159]  J. Daniel Hare,et al.  Ecology and Management of the Colorado Potato Beetle , 1990 .

[160]  T. Hsiao Host specificity, seasonality and bionomics of Leptinotarsa beetles , 1988 .

[161]  P. Dunn,et al.  Cysteine digestive proteinases in Coleoptera , 1987 .

[162]  A. Forgash Insecticide resistance in the Colorado potato beetle. , 1985 .

[163]  J. Pasteels,et al.  Defensive mechanisms against predation in the Colorado beetle (Leptinotarsa decemlineata, Say) , 1977 .

[164]  R. Denno,et al.  Insect Ecology: Behavior, Populations and Communities , 1975 .

[165]  Miguel Ángel Martínez,et al.  International Journal of Molecular Sciences Phytocystatins: Defense Proteins against Phytophagous Insects and Acari , 2022 .