Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the american college of radiology imaging network 6698 breast cancer trial

To evaluate a gradient nonlinearity correction (GNC) program for quantitative apparent diffusion coefficient (ADC) measurements on phantom and human subject diffusion‐weighted (DW) magnetic resonance imaging (MRI) scans in a multicenter breast cancer treatment response study

[1]  P. Basser,et al.  Analytical Expressions for the b Matrix in NMR Diffusion Imaging and Spectroscopy , 1994 .

[2]  G C McKinnon,et al.  Menstrual cycle variation of apparent diffusion coefficients measured in the normal breast using MRI , 2001, Journal of magnetic resonance imaging : JMRI.

[3]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[4]  N J Pelc,et al.  Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion‐weighted imaging , 2003, Magnetic resonance in medicine.

[5]  Huawei Zhao,et al.  Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images , 2004, Magnetic resonance in medicine.

[6]  Peter Gibbs,et al.  Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. , 2006, Magnetic resonance imaging.

[7]  Daniel P Barboriak,et al.  Magnetic resonance assessment of response to therapy: tumor change measurement, truth data and error sources. , 2009, Translational oncology.

[8]  P. Choyke,et al.  Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. , 2009, Neoplasia.

[9]  B. Naume,et al.  Neoadjuvant chemotherapy in breast cancer-response evaluation and prediction of response to treatment using dynamic contrast-enhanced and diffusion-weighted MR imaging , 2010, European Radiology.

[10]  Brian D Ross,et al.  Predicting and monitoring cancer treatment response with diffusion‐weighted MRI , 2010, Journal of magnetic resonance imaging : JMRI.

[11]  Oliver Geier,et al.  Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy , 2010, Acta oncologica.

[12]  Savannah C Partridge,et al.  Diffusion tensor magnetic resonance imaging of the normal breast. , 2010, Magnetic resonance imaging.

[13]  C. Meyer,et al.  Diffusion coefficient measurement using a temperature‐controlled fluid for quality control in multicenter studies , 2011, Journal of magnetic resonance imaging : JMRI.

[14]  Wendy B DeMartini,et al.  Improved diagnostic accuracy of breast MRI through combined apparent diffusion coefficients and dynamic contrast‐enhanced kinetics , 2011, Magnetic resonance in medicine.

[15]  C. Beaulieu,et al.  The effect of concomitant gradient fields on diffusion tensor imaging , 2012, Magnetic resonance in medicine.

[16]  Christopher J. Hardy,et al.  Improved correction for gradient nonlinearity effects in diffusion‐weighted imaging , 2013, Journal of magnetic resonance imaging : JMRI.

[17]  Timothy D Johnson,et al.  Multi‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantom , 2013, Journal of magnetic resonance imaging : JMRI.

[18]  Thomas L Chenevert,et al.  Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements , 2014, Magnetic resonance in medicine.