Guest‐Cage Atomic Interactions in a Clathrate‐Based Phase‐Change Material

New clathrate-based phase-change materials with cage-like structures incorporating Cs and Ba guest atoms, are reported as a means of altering crystallization and amorphization behavior by controlling 'guest-cage' interactions via intra-complex guest vibrational effects. Both a high resistance to spontaneous crystallization, and long retention of the amorphous phase are achieved, as well as a low melting energy. This approach provides a route for achieving cage-controlled semiconductor devices.

[1]  R. Ji,et al.  Correlation between optical absorption redshift and carrier density in phase change materials , 2013 .

[2]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[3]  Y. Cho,et al.  Polymorphism of GeSbTe superlattice nanowires. , 2013, Nano letters.

[4]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[5]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[6]  X. Miao,et al.  Phonon Properties and Low Thermal Conductivity of Phase Change Material with Superlattice-Like Structure , 2012 .

[7]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[8]  M. Wuttig,et al.  Phase‐Change Materials: Vibrational Softening upon Crystallization and Its Impact on Thermal Properties , 2011 .

[9]  F. Xiong,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[10]  Barry C. Smith,et al.  Ionic radii for Group 1 and Group 2 halide, hydride, fluoride, oxide, sulfide, selenide and telluride crystals. , 2010, Dalton transactions.

[11]  J. Beeman,et al.  Embedded binary eutectic alloy nanostructures: a new class of phase change materials. , 2010, Nano letters.

[12]  J. Robertson,et al.  Bonding origin of optical contrast in phase-change memory materials , 2010 .

[13]  E. D. Sloan,et al.  Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth , 2009, Science.

[14]  Seung-Yun Lee,et al.  Phase-Change-Driven Programmable Switch for Nonvolatile Logic Applications , 2009, IEEE Electron Device Letters.

[15]  J. Yates,et al.  A Fasting Inducible Switch Modulates Gluconeogenesis Via Activator-Coactivator Exchange , 2008, Nature.

[16]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[17]  E. Bakkers,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[18]  Simone Raoux,et al.  Crystallization properties of ultrathin phase change films , 2008 .

[19]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[20]  G. Ellis‐Davies,et al.  Caged compounds: photorelease technology for control of cellular chemistry and physiology , 2007, Nature Methods.

[21]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.

[22]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[23]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[24]  Guo-Fu Zhou,et al.  Materials aspects in phase change optical recording , 2001 .

[25]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[26]  W. Sheldrick,et al.  Discrete Crown‐Shaped Te8 Rings in Cs3 Te22 , 1995 .

[27]  G. Pimentel,et al.  Infrared spectra of the clathrate hydrates of acetylene and of acetylene/acetone , 1987 .

[28]  R. G. Ross,et al.  Unusual PT dependence of thermal conductivity for a clathrate hydrate , 1981, Nature.

[29]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[30]  S.J. Koester,et al.  Programmable via Using Indirectly Heated Phase-Change Switch for Reconfigurable Logic Applications , 2008, IEEE Electron Device Letters.

[31]  Stefan Blügel,et al.  Unravelling the interplay of local structure and physical properties in phase-change materials , 2006 .

[32]  M. Kanatzidis,et al.  Molten Salt Synthesis and Properties of Three New Solid-State Ternary Bismuth Chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13 , 1993 .

[33]  S. Charles,et al.  Infrared spectral perturbations in matrix experiments , 1963 .

[34]  H. M. Powell 15. The structure of molecular compounds. Part IV. Clathrate compounds , 1948 .