Identifying a diffusion coefficient in a time-fractional diffusion equation

Abstract In this paper, we propose a conjugate gradient algorithm for identifying a space-dependent diffusion coefficient in a time-fractional diffusion equation from the boundary Cauchy data in one-dimensional case. The existence and uniqueness of the solution for a weak form of the direct problem are obtained. The identification of diffusion coefficient is formulated into a variational problem by the Tikhonov-type regularization. The existence, stability and convergence of a minimizer for the variational problem approach to the exact diffusion coefficient are provided. We use a conjugate gradient method to solve the variational problem based on the deductions of a sensitive problem and an adjoint problem. We test three numerical examples and show the effectiveness of the proposed method.

[1]  Brian Berkowitz,et al.  Anomalous transport in laboratory‐scale, heterogeneous porous media , 2000 .

[2]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[3]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[4]  Jun Zou,et al.  A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction , 2000 .

[5]  Ting Wei,et al.  Determination of Robin coefficient in a fractional diffusion problem , 2016 .

[6]  L. Gelhar,et al.  Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis , 1992 .

[7]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[8]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[9]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[10]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[12]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[13]  Ting Wei,et al.  Identification of the zeroth-order coefficient in a time fractional diffusion equation , 2017 .

[14]  Jungang Wang,et al.  A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation , 2014 .

[15]  Masahiro Yamamoto,et al.  Time-fractional diffusion equation in the fractional Sobolev spaces , 2015 .

[16]  Ralf Metzler,et al.  Boundary value problems for fractional diffusion equations , 2000 .

[17]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[18]  S B Yuste,et al.  Subdiffusion-limited A+A reactions. , 2001, Physical review letters.

[19]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[20]  Naomichi Hatano,et al.  Dispersive transport of ions in column experiments: An explanation of long‐tailed profiles , 1998 .

[21]  J. Klafter,et al.  Subdiffusive transport close to thermal equilibrium: from the langevin equation to fractional diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Zhidong Zhang An undetermined coefficient problem for a fractional diffusion equation , 2016 .

[23]  Daisuke Fujiwara,et al.  Concrete Characterization of the Domains of Fractional Powers of Some Elliptic Differential Operators of the Second Order , 1967 .

[24]  Yury Luchko,et al.  Maximum principle and its application for the time-fractional diffusion equations , 2011 .

[25]  T. Wei,et al.  An inverse time-dependent source problem for a time-fractional diffusion equation , 2016 .

[26]  Masahiro Yamamoto,et al.  Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation , 2013 .

[27]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[28]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[29]  Massimiliano Giona,et al.  Fractional diffusion equation and relaxation in complex viscoelastic materials , 1992 .

[30]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[31]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[32]  R. Gorenflo,et al.  Some recent advances in theory and simulation of fractional diffusion processes , 2007, 0801.0146.

[33]  Yury F. Luchko Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation , 2010, Comput. Math. Appl..

[34]  William Rundell,et al.  An inverse problem for a one-dimensional time-fractional diffusion problem , 2012 .

[35]  Masahiro Yamamoto,et al.  Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation , 2009 .

[36]  Ting Wei,et al.  Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation , 2015 .

[37]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[38]  Ying Zhang,et al.  Inverse source problem for a fractional diffusion equation , 2011 .