Fast Solution Methods for Convex Quadratic Optimization of Fractional Differential Equations
暂无分享,去创建一个
Jacek Gondzio | John W. Pearson | Spyridon Pougkakiotis | Santolo Leveque | J. Gondzio | J. Pearson | Spyridon Pougkakiotis | S. Leveque
[1] N. Levinson. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .
[2] R. Glowinski. Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .
[3] R. Koeller. Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .
[4] J. L. Hock,et al. An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .
[5] S. Reddi,et al. Eigenvector properties of Toeplitz matrices and their application to spectral analysis of time series , 1984 .
[6] James R. Bunch,et al. Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .
[7] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[8] T. Chan. An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .
[9] G. Strang,et al. Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .
[10] Eugene E. Tyrtyshnikov,et al. Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..
[11] R. Chan,et al. A Family of Block Preconditioners for Block Systems , 1992, SIAM J. Sci. Comput..
[12] Stevens,et al. Self-similar transport in incomplete chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[13] Jonathan Eckstein,et al. Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..
[14] J. Nagy,et al. FFT-based preconditioners for Toeplitz-block least squares problems , 1993 .
[15] J. Nagy,et al. Circulant Preconditioned Toeplitz Least Squares Iterations , 1994, SIAM J. Matrix Anal. Appl..
[16] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[17] Raymond H. Chan,et al. Best-conditioned circulant preconditioners , 1995 .
[18] Xiao-Qing Jin,et al. A preconditioner for constrained and weighted least squares problems with Toeplitz structure , 1996 .
[19] Paolo Tilli,et al. Locally Toeplitz sequences: spectral properties and applications , 1998 .
[20] I. Podlubny. Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .
[21] V. Simoncini,et al. Block--diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 1999 .
[22] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[23] Stefano Serra Capizzano,et al. Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..
[24] Ilse C. F. Ipsen. A Note on Preconditioning Nonsymmetric Matrices , 2001, SIAM J. Sci. Comput..
[25] Vickie E. Lynch,et al. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .
[26] M. Meerschaert,et al. Finite difference approximations for fractional advection-dispersion flow equations , 2004 .
[27] Michael K. Ng. Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scientific Computation) , 2004 .
[28] Yury F. Luchko,et al. Algorithms for the fractional calculus: A selection of numerical methods , 2005 .
[29] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[30] Tony F. Chan,et al. Circulant preconditioners for Toeplitz-block matrices , 1994, Numerical Algorithms.
[31] M. Meerschaert,et al. Finite difference methods for two-dimensional fractional dispersion equation , 2006 .
[32] M. Meerschaert,et al. Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .
[33] Eric de Sturler,et al. Preconditioners for Generalized Saddle-Point Problems , 2006, SIAM J. Numer. Anal..
[34] Shivkumar Chandrasekaran,et al. A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..
[35] Norbert Heuer,et al. Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..
[36] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[37] Hong Wang,et al. A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..
[38] Jianfei Huang,et al. The Grünwald-Letnikov method for fractional differential equations , 2011, Comput. Math. Appl..
[39] R. Chan. Circulant preconditioners for Hermitian Toeplitz systems , 2011 .
[40] M. Neytcheva. On element-by-element Schur complement approximations , 2011 .
[41] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[42] Andrew J. Wathen,et al. A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..
[43] Martin Stoll,et al. Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[44] Jacek Gondzio,et al. Interior point methods 25 years later , 2012, Eur. J. Oper. Res..
[45] Han Xiao,et al. Covariance matrix estimation for stationary time series , 2011, 1105.4563.
[46] Jianlin Xia,et al. A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling , 2012, SIAM J. Matrix Anal. Appl..
[47] A. Wathen,et al. FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS ∗ , 2013 .
[48] Siu-Long Lei,et al. A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..
[49] Richard G. Baraniuk,et al. Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..
[50] Yvan Notay,et al. A New Analysis of Block Preconditioners for Saddle Point Problems , 2014, SIAM J. Matrix Anal. Appl..
[51] Maya Neytcheva,et al. Numerical and computational aspects of some block-preconditioners for saddle point systems , 2015, Parallel Comput..
[52] G. Wang,et al. Alternating Direction Method of Multipliers for Separable Convex Optimization of Real Functions in Complex Variables , 2015 .
[53] Wotao Yin,et al. On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..
[54] Stefano Serra Capizzano,et al. Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..
[55] Maya Neytcheva,et al. Spectral analysis of coupled PDEs and of their Schur complements via Generalized Locally Toeplitz sequences in 2D , 2016 .
[56] Martin Stoll,et al. Fast tensor product solvers for optimization problems with fractional differential equations as constraints , 2016, Appl. Math. Comput..
[57] Lek-Heng Lim,et al. Algorithms for structured matrix-vector product of optimal bilinear complexity , 2016, 2016 IEEE Information Theory Workshop (ITW).
[58] Siu-Long Lei,et al. Multilevel Circulant Preconditioner for High-Dimensional Fractional Diffusion Equations , 2016 .
[59] Mehdi Dehghan,et al. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations , 2017, J. Comput. Phys..
[60] Michael K. Ng,et al. A Splitting Preconditioner for Toeplitz-Like Linear Systems Arising from Fractional Diffusion Equations , 2017, SIAM J. Matrix Anal. Appl..
[61] Carlo Garoni,et al. Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .
[62] Stefano Serra Capizzano,et al. Block Generalized Locally Toeplitz Sequences: From the Theory to the Applications , 2018, Axioms.
[63] Daniele Bertaccini,et al. Limited Memory Block Preconditioners for Fast Solution of Fractional Partial Differential Equations , 2018, J. Sci. Comput..
[64] Fabio Durastante,et al. Fractional PDE constrained optimization , 2018 .
[65] Stefano Serra Capizzano,et al. Spectral Analysis and Multigrid Methods for Finite Volume Approximations of Space-Fractional Diffusion Equations , 2018, SIAM J. Sci. Comput..
[66] Michael K. Ng,et al. Circulant preconditioners for a kind of spatial fractional diffusion equations , 2018, Numerical Algorithms.
[67] Guo-Feng Zhang,et al. An MHSS-like iteration method for two-by-two linear systems with application to FDE optimization problems , 2019, J. Comput. Appl. Math..
[68] B. Khoromskij,et al. Tensor product method for fast solution of optimal control problems with fractional multidimensional Laplacian in constraints , 2018, J. Comput. Phys..