Rotational and Rotational-Vibrational Raman Spectroscopy of Air to Characterize Astronomical Spectrographs.

Raman scattering enables unforeseen uses for the laser guide-star system of the Very Large Telescope. Here, we present the observation of one up-link sodium laser beam acquired with the ESPRESSO spectrograph at a resolution λ/Δλ∼140 000. In 900 s on source, we detect the pure rotational Raman lines of ^{16}O_{2}, ^{14}N_{2}, and ^{14}N^{15}N (tentatively) up to rotational quantum numbers J of 27, 24, and 9, respectively. We detect the ^{16}O_{2} fine-structure lines induced by the interaction of the electronic spin S and end-over-end rotational angular momentum N in the electronic ground state of this molecule up to N=9. The same spectrum also reveals the ν_{1←0} rotational-vibrational Q-branch for ^{16}O_{2} and ^{14}N_{2}. These observations demonstrate the potential of using laser guide-star systems as accurate calibration sources for characterizing new astronomical spectrographs.

[1]  Awad Aubad,et al.  Towards a framework building for social systems modelling , 2020 .

[2]  J. Milli,et al.  Raman-scattered laser guide-star photons to monitor the scatter of astronomical telescope mirrors , 2018, Astronomy & Astrophysics.

[3]  Fr'ed'eric P.A. Vogt,et al.  fcmaker: Automating the creation of ESO-compliant finding charts for Observing Blocks on p2 , 2018, Astron. Comput..

[4]  Frédéric P. A. Vogt,et al.  fcmaker: Creating ESO-compliant finding charts for Observing Blocks on p2 , 2018 .

[5]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[6]  Brett M. Morris,et al.  astroplan: An Open Source Observation Planning Package in Python , 2017, 1712.09631.

[7]  Adam Ginsburg,et al.  Astroquery: Access to online data resources , 2017 .

[8]  H. Kuntschner,et al.  Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories , 2017, 1706.07050.

[9]  J.-L. Lizon,et al.  AOF: standalone test results of GALACSI , 2016, Astronomical Telescopes + Instrumentation.

[10]  Céline d'Orgeville,et al.  Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness , 2016, Astronomical Telescopes + Instrumentation.

[11]  Douglas M. Summers,et al.  The First Component of the Adaptive Optics Facility Enters Operations: The Laser Traffic Control System on Paranal , 2015 .

[12]  B. Drouin,et al.  High resolution spectral analysis of oxygen. IV. Energy levels, partition sums, band constants, RKR potentials, Franck-Condon factors involving the X³Σg⁻, a₁Δg and b¹Σg⁺ states. , 2014, The Journal of chemical physics.

[13]  D. Bonaccini Calia,et al.  Laser guide star pointing camera for ESO LGS Facilities , 2014, Astronomical Telescopes and Instrumentation.

[14]  Patrick Leisching,et al.  Series production of next-generation guide-star lasers at TOPTICA and MPBC , 2014, Astronomical Telescopes and Instrumentation.

[15]  M. Mannetta,et al.  VLT instruments: industrial solutions for non-scientific detector systems , 2014, Astronomical Telescopes and Instrumentation.

[16]  Ronald Holzlöhner,et al.  The Four-Laser Guide Star Facility: Design considerations and system implementation , 2014 .

[17]  Paul Hickson,et al.  High resolution mesospheric sodium properties for adaptive optics applications , 2014 .

[18]  Thomas Rose,et al.  An episode of extremely low precipitable water vapour over Paranal observatory , 2014 .

[19]  Christophe Dupuy,et al.  The ESO Adaptive Optics Facility under Test , 2013 .

[20]  Ben M. Elliott,et al.  High resolution spectral analysis of oxygen. III. Laboratory investigation of the airglow bands. , 2013, The Journal of chemical physics.

[21]  M. Mannetta,et al.  ESPRESSO — An Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations , 2013 .

[22]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[23]  F. Rigaut,et al.  Characterization of the sodium layer at Cerro Pachon, and impact on laser guide star performance , 2013, 1301.3690.

[24]  Julio Navarrete,et al.  A water vapour monitor at Paranal Observatory , 2012, Other Conferences.

[25]  Wilhelm Kaenders,et al.  RFA-based 589-nm guide star lasers for ESO VLT: a paradigm shift in performance, operational simplicity, reliability, and maintenance , 2012, Other Conferences.

[26]  Antonio Manescau,et al.  Astronomical Spectrograph Calibration at the Exo-Earth Detection Limit , 2012 .

[27]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[28]  H. Müller,et al.  High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the X(3)Σ(g)(-), a(1)Δ(g), b(1)Σ(g)(+) states. , 2012, The Journal of chemical physics.

[29]  H. Müller,et al.  High resolution spectral analysis of oxygen. II. Rotational spectra of a(1)Δ(g)  O2 isotopologues. , 2012, The Journal of chemical physics.

[30]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[31]  Mark Casali,et al.  The Science Impact of HAWK-I , 2011 .

[32]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[33]  Paola Amico,et al.  Laser operations at the 8-10m class telescopes Gemini, Keck, and the VLT: lessons learned, old and new challenges , 2010, Astronomical Telescopes + Instrumentation.

[34]  M. Kiekebusch,et al.  GRAAL: a seeing enhancer for the NIR wide-field imager Hawk-I , 2010, Astronomical Telescopes + Instrumentation.

[35]  Jean-Louis Lizon,et al.  ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations , 2010, Astronomical Telescopes + Instrumentation.

[36]  Ronald Holzlöhner,et al.  Statistics of the sodium layer parameters at low geographic latitude and its impact on adaptive-optics sodium laser guide star characteristics , 2010 .

[37]  R. Holzlohner,et al.  Optimization of cw sodium laser guide star efficiency , 2009, 0908.1527.

[38]  Mark Casali,et al.  HAWK-I: the high-acuity wide-field K-band imager for the ESO Very Large Telescope , 2008 .

[39]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[40]  Douglas M. Summers,et al.  Second generation laser traffic control: algorithm changes supporting Mauna Kea, La Palma, and future multi-telescope laser sites , 2006, SPIE Astronomical Telescopes + Instrumentation.

[41]  Brooke Gregory,et al.  Implementation of a laser traffic control system supporting laser guide star adaptive optics on Mauna Kea , 2003, SPIE Astronomical Telescopes + Instrumentation.

[42]  Andreas Behrendt,et al.  Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient. , 2002, Applied optics.

[43]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[44]  J. Bendtsen High‐resolution Fourier transform Raman spectra of the fundamental bands of 14N15N and 15N2 , 2001 .

[45]  Mireille Louys,et al.  The ALADIN interactive sky atlas - A reference tool for identification of astronomical sources , 2000 .

[46]  Elena Masciadri,et al.  3D mapping of optical turbulence using an atmospheric numerical model - I. A useful tool for the ground-based astronomy , 1999 .

[47]  Orlov,et al.  High-Resolution Coherent Raman Spectra of Vibrationally Excited 14N2 and 15N2 , 1997, Journal of molecular spectroscopy.

[48]  J. Burris,et al.  Airborne Raman lidar. , 1996, Applied optics.

[49]  H. Takuma,et al.  Determination of Molecular Constnts of the ${\mbi X^{\bf{3}}}\mbi{\Sigma}_{\ninmbi{g}}^{\bf{-}}$ State of $\bf O_{2}$ , 1995 .

[50]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[51]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[52]  M. Chanin,et al.  Stratosphere temperature measurement using Raman lidar. , 1990, Applied optics.

[53]  S H Melfi,et al.  Remote measurements of the atmosphere using Raman scattering. , 1972, Applied optics.

[54]  J. Cooney,et al.  Measurement of Atmospheric Temperature Profiles by Raman Backscatter. , 1972 .

[55]  S. H. Melfi,et al.  OBSERVATION OF RAMAN SCATTERING BY WATER VAPOR IN THE ATMOSPHERE , 1969 .

[56]  J. Cooney,et al.  MEASUREMENTS ON THE RAMAN COMPONENT OF LASER ATMOSPHERIC BACKSCATTER , 1968 .

[57]  D. A. Leonard,et al.  Observation of Raman Scattering from the Atmosphere using a Pulsed Nitrogen Ultraviolet Laser , 1967, Nature.

[58]  G. Junk,et al.  The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources , 1958 .

[59]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[60]  F. Gonté,et al.  Laser Guide Star Facility Upgrade , 2014 .

[61]  E. Fedrigo,et al.  GALACSI – The ground layer adaptive optics system for MUSE , 2006 .

[62]  W. A. Joye,et al.  New Features of SAOImage DS9 , 2003 .

[63]  M. Shimauchi,et al.  Determination of Molecular Constnts of the X3Σg- State of O2 , 1995 .

[64]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .