Dietary Inference from Upper and Lower Molar Morphology in Platyrrhine Primates

The correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines.

[1]  Doug M Boyer,et al.  The effect of differences in methodology among some recent applications of shearing quotients. , 2015, American journal of physical anthropology.

[2]  G. Conroy Problems of body-weight estimation in fossil primates , 1987, International Journal of Primatology.

[3]  J. Diniz‐Filho,et al.  Phylogenetic analyses: comparing species to infer adaptations and physiological mechanisms. , 2012, Comprehensive Physiology.

[4]  T. Cerling,et al.  Stable isotopes in fossil hominin tooth enamel suggest a fundamental dietary shift in the Pliocene , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  M. Fortelius,et al.  Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear , 2013 .

[6]  Jinchuan Xing,et al.  Alu insertion loci and platyrrhine primate phylogeny. , 2005, Molecular phylogenetics and evolution.

[7]  S. O’Brien,et al.  A Molecular Phylogeny of Living Primates , 2011, PLoS genetics.

[8]  Mikael Fortelius,et al.  High-level similarity of dentitions in carnivorans and rodents , 2007, Nature.

[9]  M. Cartmill Arboreal Adaptations and the Origin of the Order Primates , 1972 .

[10]  R. Kay,et al.  Stirtonia victoriae, a new species of Miocene Colombian primate , 1987 .

[11]  R. Kay,et al.  The evolution of molar occlusion in the Cercopithecidae and early Catarrhines. , 1977, American journal of physical anthropology.

[12]  F. Anaya,et al.  The Adaptations of Branisella boliviana, the Earliest South American Monkey , 2002 .

[13]  F. Anaya,et al.  New specimens of the oldest fossil platyrrhine, Branisella boliviana, from Salla, Bolivia. , 1996, American journal of physical anthropology.

[14]  D. Meldrum,et al.  Evolutionary Biology and Conservation of Titis, Sakis and Uacaris: Pitheciidae and other platyrrhine seed predators , 2013 .

[15]  C. Peres Diet and feeding ecology of gray woolly monkeys (lagothrix lagotricha cana) in Central Amazonia: Comparisons with other Atelines , 1994, International Journal of Primatology.

[16]  Robert W. Sussman,et al.  Primate origins and the evolution of angiosperms , 1991, American journal of primatology.

[17]  D. Wildman,et al.  Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates). , 2006, Molecular phylogenetics and evolution.

[18]  N. Yamashita Functional dental correlates of food properties in five Malagasy lemur species. , 1998, American journal of physical anthropology.

[19]  S. Ferrari,et al.  Diet of a Free-Ranging Group of Squirrel Monkeys (Saimiri sciureus) in Eastern Brazilian Amazonia , 2003, Folia Primatologica.

[20]  J. Cant Feeding ecology of spider monkeys (Ateles geoffroyi) at Tikal, Guatemala , 1990 .

[21]  Richard F. Kay,et al.  1. On the Use of Anatomical Features To Infer Foraging Behavior in Extinct Primates , 1984 .

[22]  Doug M. Boyer,et al.  Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. , 2008, Journal of human evolution.

[23]  R. Kay,et al.  A model for comparison of masticatory effectiveness in primates , 1982, Journal of morphology.

[24]  Peter S Ungar,et al.  Occlusal relief changes with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla , 2003, American journal of primatology.

[25]  Y. Attia,et al.  A remarkable female cranium of the early Oligocene anthropoid Aegyptopithecus zeuxis (Catarrhini, Propliopithecidae) , 2007, Proceedings of the National Academy of Sciences.

[26]  M. Remis,et al.  Initial studies on the contributions of body size and gastrointestinal passage rates to dietary flexibility among gorillas. , 2000, American journal of physical anthropology.

[27]  K. Luchterhand,et al.  Mahanico hershkovitzi, gen. et sp. nov., un primate du Miocène moyen d'Amérique du Sud , 1986 .

[28]  P. M. Butler SOME FUNCTIONAL ASPECTS OF MOLAR EVOLUTION , 1972, Evolution; international journal of organic evolution.

[29]  C. Chapman Flexibility in Diets of Three Species of Costa Rican Primates , 1987 .

[30]  J. Allman,et al.  High-resolution computed tomography study of the cranium of a fossil anthropoid primate, Parapithecus grangeri: new insights into the evolutionary history of primate sensory systems. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[31]  R. Kay,et al.  Diets of early Miocene African hominoids , 1977, Nature.

[32]  E. Simons,et al.  Diets of fossil primates from the Fayum Depression of Egypt: a quantitative analysis of molar shearing. , 2001, Journal of human evolution.

[33]  W. Kinzey,et al.  Functional patterns of molar occlusion in platyrrhine primates. , 1976, American journal of physical anthropology.

[34]  T. Defler,et al.  Diet of a group ofLagothrix Lagothricha Lagothricha in southeastern Colombia , 1996, International Journal of Primatology.

[35]  K. Strier Diet in one group of woolly spider monkeys, or muriquis (Brachyteles arachnoides) , 1991, American journal of primatology.

[36]  R. F. Kay,et al.  The functional adaptations of primate molar teeth. , 1975, American journal of physical anthropology.

[37]  Doug M Boyer,et al.  Dental topography of platyrrhines and prosimians: convergence and contrasts. , 2014, American journal of physical anthropology.

[38]  Lawrence B. Martin,et al.  Enamel thickness and microstructure in pitheciin primates, with comments on dietary adaptations of the middle Miocene hominoid Kenyapithecus. , 2003, Journal of human evolution.

[39]  N. Dominy,et al.  Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii. , 2008, Journal of human evolution.

[40]  Montague W. Demment,et al.  A Nutritional Explanation for Body-Size Patterns of Ruminant and Nonruminant Herbivores , 1985, The American Naturalist.

[41]  K. Milton Habitat, diet, and activity patterns of free-ranging woolly spider monkeys (Brachyteles arachnoides E. Geoffroy 1806) , 1984, International Journal of Primatology.

[42]  R. Kay,et al.  On the relationship between chitin particle size and digestibility in the primate Galago senegalensis , 1979 .

[43]  M. Takai New specimens of Neosaimiri fieldsi from La Venta, Colombia: a middle Miocene ancestor of the living squirrel monkeys. , 1994 .

[44]  F. Grine,et al.  Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  Daniel Sabatier,et al.  Diets of some French guianan primates: Food composition and food choices , 1996, International Journal of Primatology.

[46]  M. Cartmill,et al.  New views on primate origins , 2005 .

[47]  J. Fleagle,et al.  Diet of the northern bearded saki (Chiropotes satanas chiropotes): A neotropical seed predator , 1988, American journal of primatology.

[48]  P. Lucas Dental Functional Morphology: How Teeth Work , 2004 .

[49]  K. Allen,et al.  Dietary quality and encephalization in platyrrhine primates , 2012, Proceedings of the Royal Society B: Biological Sciences.

[50]  D. W. Powers,et al.  The anatomy of Dolichocebus gaimanensis, a stem platyrrhine monkey from Argentina. , 2008, Journal of human evolution.

[51]  A. Crompton,et al.  Functional Occlusion in Tribosphenic Molars , 1969, Nature.

[52]  R. Kay,et al.  "Giant" tamarin from the Miocene of Colombia. , 1994, American journal of physical anthropology.

[53]  D. Youlatos Multivariate analysis of organismal and habitat parameters in two neotropical primate communities. , 2004, American journal of physical anthropology.

[54]  D. Boyer,et al.  Diet and dental topography in pitheciine seed predators. , 2013, American journal of physical anthropology.

[55]  C. M. Hladik,et al.  Le régime alimentaire des Primates de l’île de Barro-Colorado (Panama) , 1971 .

[56]  C. Nunn,et al.  Comparative methods for studying primate adaptation and allometry , 2001 .

[57]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[58]  Peter S. Ungar,et al.  EXPLORING THE EFFECTS OF TOOTH WEAR ON FUNCTIONAL MORPHOLOGY: A PRELIMINARY STUDY USING DENTAL TOPOGRAPHIC ANALYSIS , 2000 .

[59]  K. Glander The foraging strategy of howler monkeys: A study in primate economics , 1981, International Journal of Primatology.

[60]  J. Fleagle,et al.  Early Miocene Paleobiology in Patagonia: Paleobiology of Santacrucian primates , 2012 .

[61]  K. Beard,et al.  The eosimiid primates (Anthropoidea) of the Heti Formation, Yuanqu Basin, Shanxi and Henan Provinces, People's Republic of China. , 2004, Journal of human evolution.

[62]  J. J. Flynn,et al.  Estimating body mass in New World “monkeys” (Platyrrhini, Primates), with a consideration of the Miocene platyrrhine, Chilecebus carrascoensis , 2008 .

[63]  E. Heymann,et al.  Prey foraging of red titi monkeys, Callicebus cupreus, in comparison to sympatric tamarins, Saguinus mystax and Saguinus fuscicollis. , 2008, American journal of physical anthropology.

[64]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[65]  C. Julliot,et al.  Diet of the red howler monkey (Alouatta seniculus) in French Guiana , 1993, International Journal of Primatology.

[66]  P. Stevenson,et al.  A Multi-Forest Comparison of Dietary Preferences and Seed Dispersal by Ateles spp , 2005, International Journal of Primatology.

[67]  Sunil Bajpai,et al.  The oldest Asian record of Anthropoidea , 2008, Proceedings of the National Academy of Sciences.

[68]  E. Simons,et al.  The ecology of oligocene African anthropoidea , 1980, International Journal of Primatology.

[69]  P. Rodman Adaptations for Foraging in Nonhuman Primates , 1984 .

[70]  J. Ayres Comparative feeding ecology of the Uakari and Bearded Saki, Cacajao and Chiropotes , 1989 .

[71]  R. J. Smith,et al.  Body mass in comparative primatology. , 1997, Journal of human evolution.

[72]  Claude Marcel Hladik,et al.  Rapports trophiques entre végétation et primates dans la forêt de Barro Colorado, Panama , 1969, La Terre et La Vie, Revue d'Histoire naturelle.

[73]  Paul J. Constantino,et al.  Dental enamel as a dietary indicator in mammals. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[74]  Yaron Lipman,et al.  Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. , 2011, American Journal of Physical Anthropology.

[75]  K. Hiiemae,et al.  Jaw movement and tooth use in recent and fossil primates. , 1974, American journal of physical anthropology.

[76]  S. Cooke Paleodiet of Extinct Platyrrhines With Emphasis on the Caribbean Forms: Three‐Dimensional Geometric Morphometrics of Mandibular Second Molars , 2011, Anatomical record.

[77]  S. Strait Dietary reconstruction of small-bodied omomyoid primates , 2001 .

[78]  R. Kay,et al.  New perspectives on anthropoid origins , 2010, Proceedings of the National Academy of Sciences.

[79]  R. Mittermeier,et al.  Ecology and behavior of neotropical primates , 1981 .

[80]  J. Dew Foraging, Food Choice, and Food Processing by Sympatric Ripe-Fruit Specialists: Lagothrix lagotricha poeppigii and Ateles belzebuth belzebuth , 2005, International Journal of Primatology.

[81]  K. Strier,et al.  Diet of a muriqui group (Brachyteles arachnoides) in continuous primary forest , 2004, Primates.

[82]  K. Glander,et al.  DENTAL MICROWEAR AND DIET IN A WILD POPULATION OF MANTLED HOWLING MONKEYS (Alouatta palliata) , 1996 .

[83]  W. Kinzey Dietary and dental adaptations in the Pitheciinae. , 1992, American journal of physical anthropology.

[84]  Bernard Wood,et al.  Food Acquisition and Processing in Primates , 1984 .

[85]  W. Kinzey,et al.  Physical and chemical properties of fruit and seeds eaten byPithecia andChiropotes in Surinam and Venezuela , 1993, International Journal of Primatology.

[86]  W. S. Sheine,et al.  An analysis of chewed food particle size and its relationship to molar structure in the primatesCheirogaleus medius andGalago senegalensis and the insectivoranTupaia glis , 1977 .

[87]  S. Gaulin,et al.  Behavioral ecology ofAlouatta seniculus in Andean cloud forest , 1982, International Journal of Primatology.

[88]  J. Ayres Uakaris and Amazonian flooded forest. , 1986 .

[89]  M. Ravosa Anthropoid Origins and the Modern Symphysis , 1999, Folia Primatologica.

[90]  H. Covert,et al.  Anatomy and Behaviour of Extinct Primates , 1984 .

[91]  J. Ahumada,et al.  Ecological strategies of woolly monkeys (Lagothrix lagotricha) at Tinigua National Park, Colombia , 1994, American journal of primatology.