The Asymptotic Number of Labeled Graphs withnVertices, qEdges, and No Isolated Vertices
暂无分享,去创建一个
Letd(n,q) be the number of labeled graphs withnvertices, q\le N={n \choose 2} edges, and no isolated vertices. Letx=q/nandk=2q?n. We determine functionswk~1,a(x), and?(x) such that d(n,\ q)\sim w_k{N \choose q}\ e^{n\varphi (x)+a(x)} uniformly for allnandq>n/2.
[1] Brendan D. McKay,et al. The Asymptotic Number of Labeled Connected Graphs with a Given Number of Vertices and Edges , 1990, Random Struct. Algorithms.
[2] Éva Tardos,et al. Combinatorics in computer science , 1996 .
[3] Charles M. Stein,et al. Asymptotic Evaluation of the Number of Latin Rectangles , 1978, J. Comb. Theory, Ser. A.