Orthogonal Subspace Projection Target Detector for Hyperspectral Anomaly Detection

Orthogonal subspace projection (OSP) is a versatile hyperspectral imaging technique which has shown great potential in dimensionality reduction, target detection, spectral unmixing, etc. However, due to its inherent requirement of prior target knowledge, OSP has not been explored in anomaly detection. This article takes advantage of an unsupervised OSP-based algorithm, automatic target generation process (ATGP), and a recently developed OSP-go decomposition (OSP-GoDec) along with data sphering (DS) to make OSP applicable to anomaly detection. Its idea is to implement ATGP on the background (BKG) and target subspaces constructed from the low-rank matrix L and sparse matrix S generated by OSP-GoDec to derive an OSP-based anomaly detector (OSP-AD). In particular, OSP-AD also includes DS to remove BKG interference from the target subspace so as to enhance anomaly detection. Surprisingly, operating data samples on different constructions of the BKG subspace and the target subspace yields various versions of OSP-AD. Experiments show that given an appropriate construction of the BKG subspace and the target subspace, OSP-AD can be shown to outperform existing anomaly detectors including Reed-Xiaoli anomaly detector and collaborative representation-based anomaly detector (CRD).

[1]  Chein-I Chang,et al.  Further results on relationship between spectral unmixing and subspace projection , 1998, IEEE Trans. Geosci. Remote. Sens..

[2]  Chein-I Chang,et al.  Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis , 2005, IEEE Trans. Geosci. Remote. Sens..

[3]  Chein-I Chang,et al.  A Posteriori Hyperspectral Anomaly Detection for Unlabeled Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Heesung Kwon,et al.  Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Bo Du,et al.  BASO: A Background-Anomaly Component Projection and Separation Optimized Filter for Anomaly Detection in Hyperspectral Images , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Bo Du,et al.  A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Mark L. G. Althouse,et al.  Least squares subspace projection approach to mixed pixel classification for hyperspectral images , 1998, IEEE Trans. Geosci. Remote. Sens..

[8]  Yunsong Li,et al.  Structure Tensor and Guided Filtering-Based Algorithm for Hyperspectral Anomaly Detection , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Xiuping Jia,et al.  Spectral constraint adversarial autoencoders approach to feature representation in hyperspectral anomaly detection , 2019, Neural Networks.

[10]  Qian Du,et al.  A Randomized Subspace Learning Based Anomaly Detector for Hyperspectral Imagery , 2018, Remote. Sens..

[11]  W. Farrand Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique , 1997 .

[12]  Chein-I Chang,et al.  A Review of Virtual Dimensionality for Hyperspectral Imagery , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  Antonio J. Plaza,et al.  Analysis and Optimizations of Global and Local Versions of the RX Algorithm for Anomaly Detection in Hyperspectral Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  Tiziana Veracini,et al.  A Locally Adaptive Background Density Estimator: An Evolution for RX-Based Anomaly Detectors , 2014, IEEE Geoscience and Remote Sensing Letters.

[15]  Weiying Xie,et al.  Spectral Adversarial Feature Learning for Anomaly Detection in Hyperspectral Imagery , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Weiying Xie,et al.  Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[18]  Heesung Kwon,et al.  Adaptive anomaly detection using subspace separation for hyperspectral imagery , 2003 .

[19]  Luca Benini,et al.  Anomaly Detection using Autoencoders in High Performance Computing Systems , 2018, DDC@AI*IA.

[20]  Chein-I Chang,et al.  Real-time causal processing of anomaly detection for hyperspectral imagery , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[22]  Konstantinos Kalpakis,et al.  Low-rank decomposition-based anomaly detection , 2013, Defense, Security, and Sensing.

[23]  Chein-I Chang,et al.  Multiple-Window Anomaly Detection for Hyperspectral Imagery , 2008, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  Yunsong Li,et al.  Spectral–Spatial Feature Extraction for Hyperspectral Anomaly Detection , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Felix Hueber,et al.  Hyperspectral Imaging Techniques For Spectral Detection And Classification , 2016 .

[26]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[27]  Qian Du,et al.  Anomaly Detection in Hyperspectral Imagery Based on Low-Rank Representation Incorporating a Spatial Constraint , 2019, Remote. Sens..

[28]  Chein-I Chang,et al.  Anomaly Detection Using Causal Sliding Windows , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  Qian Du,et al.  A comparative study for orthogonal subspace projection and constrained energy minimization , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Chein-I Chang,et al.  Virtual dimensionality for hyperspectral imagery , 2009 .

[31]  Chein-I Chang,et al.  Target-constrained interference-minimized approach to subpixel target detection for hyperspectral images , 2000 .

[32]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[33]  Bo Du,et al.  Hyperspectral Anomaly Detection via a Sparsity Score Estimation Framework , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Qian Du,et al.  Automatic target recognition for hyperspectral imagery using high-order statistics , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[35]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[36]  Chein-I Chang,et al.  Characterization of anomaly detection in hyperspectral imagery , 2006 .

[37]  Chein-I Chang,et al.  Target signature-constrained mixed pixel classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[38]  Chein-I Chang,et al.  Recursive Orthogonal Projection-Based Simplex Growing Algorithm , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Delian Liu,et al.  Low-Rank and Sparse Matrix Decomposition With Orthogonal Subspace Projection-Based Background Suppression for Hyperspectral Anomaly Detection , 2020, IEEE Geoscience and Remote Sensing Letters.

[40]  Chein-I Chang,et al.  Real-Time Progressive Hyperspectral Image Processing , 2016 .

[41]  Chein-I Chang Real-Time Recursive Hyperspectral Sample and Band Processing , 2017 .

[42]  Qian Du,et al.  Collaborative Representation for Hyperspectral Anomaly Detection , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Licheng Jiao,et al.  Hyperspectral Anomaly Detection Based on Low-Rank Representation With Data-Driven Projection and Dictionary Construction , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[44]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[45]  Yanfei Zhong,et al.  Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully Convolutional Autoencoder , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Zhihong Huang,et al.  Game Theory-Based Hyperspectral Anomaly Detection , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Antonio J. Plaza,et al.  Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[48]  David Malah,et al.  Rank Estimation and Redundancy Reduction of High-Dimensional Noisy Signals With Preservation of Rare Vectors , 2007, IEEE Transactions on Signal Processing.

[49]  Chein-I Chang,et al.  Automatic spectral target recognition in hyperspectral imagery , 2003 .

[50]  Wei Xiong,et al.  A Theory of High-Order Statistics-Based Virtual Dimensionality for Hyperspectral Imagery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[52]  Weiyue Li,et al.  Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery , 2014 .

[53]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[54]  Qian Du,et al.  A signal-decomposed and interference-annihilated approach to hyperspectral target detection , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[56]  Chein-I Chang,et al.  An Effective Evaluation Tool for Hyperspectral Target Detection: 3D Receiver Operating Characteristic Curve Analysis , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Gongjian Wen,et al.  Low-Rank and Sparse Matrix Decomposition with Cluster Weighting for Hyperspectral Anomaly Detection , 2018, Remote. Sens..