A multisensor diagnostic satellite cloud property retrieval scheme

Active sensor data, in the form of lidar and radar cloud vertical boundaries, are used as a priori information to passive sensor satellite retrievals of cloud optical depth and effective particle radius. Correct placement of cloud in the vertical eliminates the need to approximate cloud height from multispectral passive techniques and is shown to improve uncertainties in nighttime retrievals of thin cirrus in excess of 30%. The new method is exemplified by two casen studies using imager data from GOES but remains valid for any passive/active remote sensing application. A strength of this method is its ability to diagnose components of the retrieval uncertainty and thereby quantify retrieval performance. Errors associated with the forward model and measurement uncertainties, and an independent validation of the retrieval, are discussed.

[1]  T. Nakajima,et al.  Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions , 1995 .

[2]  David P. Kratz,et al.  Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document , 1997 .

[3]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[4]  A. Macke,et al.  Single Scattering Properties of Atmospheric Ice Crystals , 1996 .

[5]  R. Welch,et al.  Cirrus Case Study : Comparison of Radiative Transfer Theory with Observations by Satellite and Aircraft , 2022 .

[6]  Patrick Minnis,et al.  Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part I: parameterization of radiance fields , 1993 .

[7]  C. Rodgers Characterization and Error Analysis of Profiles Retrieved From Remote Sounding Measurements , 1990 .

[8]  Yoshihide Takano,et al.  Radiative Transfer in Cirrus Clouds. Part III: Light Scattering by Irregular Ice Crystals , 1995 .

[9]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[10]  Skylab near-infrared observations of clouds indicating supercooled liquid water droplets , 1982 .

[11]  S. Twomey,et al.  Remote sensing of cloud parameters from spectral reflectance in the near-infrared , 1989 .

[12]  C. Sagan,et al.  Anisotropic nonconservative scattering and the clouds of Venus , 1967 .

[13]  W. Menzel,et al.  Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites , 1994 .

[14]  K. Liou,et al.  On the Transfer of Solar Radiation in Aerosol Atmospheres , 1975 .

[15]  Preface [to special section on The Earth Observing System (EOS) AM‐1 Platform] , 1998 .

[16]  T. McKee,et al.  Scattering of Visible Radiation by Finite Clouds , 1974 .

[17]  Clive D. Rodgers,et al.  A retrieval method for atmospheric composition from limb emission measurements , 1993 .

[18]  Robert J. Curran,et al.  Thin cirrus clouds - Seasonal distribution over oceans deduced from Nimbus-4 IRIS , 1988 .

[19]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[20]  L. J. Cox Optical Properties of the Atmosphere , 1979 .

[21]  Robert S. Stone,et al.  The Remote Sensing of Thin Cirrus Cloud Using Satellites, Lidar and Radiative Transfer Theory , 1990 .

[22]  K. Liou,et al.  Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 1 O.9-microm channels. , 1993, Applied optics.

[23]  N. L. Abshire,et al.  Satellite and Lidar Observations of the Albedo, Emittance and Optical Depth of Cirrus Compared to Model Calculations , 1980 .

[24]  Richard J. Engelen,et al.  Characterization of water-vapour retrievals from TOVS/HIRS and SSM/T-2 measurements , 1999 .

[25]  G. Szejwach Determination of semi-transparent cirrus cloud temperature from infrared radiances - Application to Meteosat , 1982 .

[26]  T. Kleespies The Retrieval of Marine Stratiform Cloud Properties from Multiple Observations in the 3.9-µm Window under Conditions of Varying Solar Illumination , 1995 .

[27]  David M. Winker,et al.  PICASSO-CENA mission , 1999, Remote Sensing.

[28]  David P. Kratz,et al.  THE CORRELATED k-DISTRIBUTION TECHNIQUE AS APPLIED TO THE AVHRR CHANNELS , 1995 .

[29]  M. King,et al.  Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .

[30]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[31]  Greg Michael McFarquhar,et al.  Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment , 1996 .

[32]  Steven A. Ackerman,et al.  Remote sensing cloud properties from high spectral resolution infrared observations , 1993 .

[33]  Anthony J. Baran,et al.  Sensitivity of retrieved POLDER directional cloud optical thickness to various ice particle models , 2000 .

[34]  David M. Winker,et al.  An overview of LITE: NASA's Lidar In-space Technology Experiment , 1996, Proc. IEEE.

[35]  Patrick Minnis,et al.  The 27-28 October 1986 FIRE IFO cirrus case study - Cirrus parameter relationships derived from satellite and lidar data , 1990 .

[36]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[37]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[38]  A. Arking,et al.  Retrieval of Cloud Cover Parameters from Multispectral Satellite Images , 1985 .

[39]  Andrew A. Lacis,et al.  Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape , 1996 .

[40]  F. Rawlins,et al.  Remotely Sensed Measurements of Stratocumulus Properties during FIRE Using the C130 Aircraft Multi-channel Radiometer , 1990 .

[41]  Steven Platnick,et al.  A Validation of a Satellite Cloud Retrieval during ASTEX , 1995 .

[42]  Toshiro Inoue,et al.  On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10μm Window Region , 1985 .

[43]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[44]  Bryan A. Baum,et al.  Remote Sounding of Cirrus Cloud Optical Depths and Ice Crystal Sizes from AVHRR Data: Verification Using FIRE II IFO Measurements , 1995 .

[45]  P. Watts,et al.  Testing the coherence of cirrus microphysical and bulk properties retrieved from dual‐viewing multispectral satellite radiance measurements , 1999 .

[46]  James B. Pollack,et al.  Near-Infrared Light Scattering by Terrestrial Clouds , 1970 .

[47]  T. Ackerman,et al.  Remote Sounding of the Tropical Cirrus Cloud Temperature and Optical Depth Using 6.5 and 10.5 , 1990 .

[48]  W. Wiscombe The Delta–M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions , 1977 .

[49]  Richard J. Engelen,et al.  Infrared radiative transfer in the 9.6-μm band: Application to TIROS operational vertical sounder ozone retrieval , 1997 .

[50]  Patrick Minnis,et al.  Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part II: Verification of Theoretical Cirrus Radiative Properties , 1993 .

[51]  James Abshire,et al.  The Geoscience Laser Altimetry/Ranging System , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[52]  D. Mitchell,et al.  Retrieval of Tropical Cirrus Thermal Optical Depth, Crystal Size, and Shape Using a Dual-View Instrument at 3.7 and 10.8 μm , 1999 .