Volatility Forecasting of Non-Ferrous Metal Futures: Covariances, Covariates or Combinations?

This is the first comprehensive study on the forecasting of the realized volatility of non-ferrous metal futures. Based on 8.5years of intraday data on copper, zinc, nickel, lead and aluminum, we explore a variety of extensions of the univariate heterogeneous autoregressive (HAR) model and seek to harness the economic linkages among these metals to improve forecasts. A simple approach that augments the models with shocks in other metals’ series appears to outperform more sophisticated specifications, which explicitly model covariances. The results suggest that the information inherent in the volatility series of aluminum is most useful in enhancing the accuracy of forecasts for other metals. While consistently outperforming the original HAR model with an individual model is difficult, combination forecasts, especially with univariate specifications or Bayesian model averaging, are found to conclusively outperform the benchmark.

[1]  A. Porru Industrial Metals Markets and Products , 2015 .

[2]  Matteo Manera,et al.  The Role of Outliers and Oil Price Shocks on Volatility of Metal Prices , 2015 .

[3]  Roberto Renò,et al.  Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling , 2010 .

[4]  N L JOHNSON,et al.  Bivariate distributions based on simple translation systems. , 1949, Biometrika.

[5]  Peter Christoffersen,et al.  Elements of Financial Risk Management , 2003 .

[6]  Suleyman Basak,et al.  A Model of Financialization of Commodities , 2015 .

[7]  Jakub Nowotarski,et al.  An empirical comparison of alternate schemes for combining electricity spot price forecasts , 2013 .

[8]  Xu Gong,et al.  Forecasting the volatility of crude oil futures using HAR-type models with structural breaks , 2016 .

[9]  D. Lien,et al.  Intraday return and volatility spill‐over across international copper futures markets , 2009 .

[10]  A. Worthington,et al.  Realized volatility spillovers in the non-ferrous metal futures market , 2014 .

[11]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[12]  Relative scarcity and convenience yield: evidence from non-ferrous metals , 2016 .

[13]  B. Lucey Return and Volatility Spillovers in Industrial Metals , 2013 .

[14]  Jerald J. Fletcher,et al.  Price and volatility transmission between primary and scrap metal markets , 2009 .

[15]  N. Shephard,et al.  Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading , 2010 .

[16]  E. Otranto,et al.  Volatility Transmission across Currency, Commodity and Equity Markets under Multi-Chain Regime Switching: Implications for Hedging and Portfolio Allocation , 2012 .

[17]  Zeno Adams,et al.  Financialization in commodity markets: A passing trend or the new normal? , 2015 .

[18]  Michael McAleer,et al.  Realized Volatility: A Review , 2008 .

[19]  Benoît Sévi,et al.  Forecasting the volatility of crude oil futures using intraday data , 2014, Eur. J. Oper. Res..

[20]  Sjur Westgaard,et al.  Forecasting Volatility of the U.S. Oil Market , 2014 .

[21]  P. Hansen,et al.  A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data , 2005 .

[22]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[23]  Hong Miao,et al.  Return distributions and volatility forecasting in metal futures markets: Evidence from gold, silver, and copper , 2011 .

[24]  Tim Bollerslev,et al.  Risk Everywhere: Modeling and Managing Volatility , 2017 .

[25]  Neil D. Pearson,et al.  New Evidence on the Financialization of Commodity Markets , 2014 .

[26]  Marcel Prokopczuk,et al.  Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets , 2015 .

[27]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[28]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[29]  T. Bollerslev,et al.  A Reduced Form Framework for Modeling Volatility of Speculative Prices Based on Realized Variation Measures , 2008 .

[30]  Dimitrios I. Vortelinos,et al.  Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH , 2017 .

[31]  Kevin Sheppard,et al.  Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility , 2013, Review of Economics and Statistics.

[32]  P. Mykland,et al.  Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics , 2008 .

[33]  Yannick Le Pen,et al.  Futures Trading and the Excess Co-movement of Commodity Prices , 2018 .

[34]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[35]  R. Engle Dynamic Conditional Correlation , 2002 .

[36]  K. Nam,et al.  Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution , 2008 .

[37]  Ernst Schaumburg,et al.  Federal Reserve Bank of New York Staff Reports Jump-robust Volatility Estimation Using Nearest Neighbor Truncation Jump-robust Volatility Estimation Using Nearest Neighbor Truncation , 2010 .

[38]  A. Timmermann Chapter 4 Forecast Combinations , 2006 .

[39]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[40]  P. Molnár,et al.  Volatility Forecasting of Strategically Linked Commodity ETFs: Gold - Silver , 2016 .

[41]  C. Liu,et al.  Forecasting realized volatility: a Bayesian model‐averaging approach , 2009 .

[42]  F. Diebold,et al.  Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets , 2008 .

[43]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[44]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[45]  Kevin Sheppard,et al.  Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes , 2012 .

[46]  A. Kirilenko,et al.  Convective Risk Flows in Commodity Futures Markets , 2012 .

[47]  Hélyette Geman,et al.  Theory of storage, inventory and volatility in the LME base metals , 2013 .

[48]  Roxana Halbleib,et al.  Modelling and Forecasting Multivariate Realized Volatility , 2008 .

[49]  Jozef Barunik,et al.  On the modelling and forecasting multivariate realized volatility: Generalized Heterogeneous Autoregressive (GHAR) model , 2014 .

[50]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[51]  Asymmetric shocks, persistence in volatility and spillover effects between non ferrous metals on the LME spot market , 2014 .

[52]  Tim Bollerslev,et al.  Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility , 2007 .

[53]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[54]  Suleyman Basak,et al.  A Model of Financialization of Commodities: A Model of Financialization of Commodities , 2016 .

[55]  The course of realized volatility in the LME non-ferrous metal market , 2015 .

[56]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[57]  Leopoldo Catania,et al.  The Model Confidence Set package for R , 2019 .

[58]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[59]  Michael McAleer,et al.  Econometric Modelling of Non-Ferrous Metal Prices , 2004 .

[60]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[61]  Matthias R. Fengler,et al.  A Variance Spillover Analysis Without Covariances: What Do We Miss? , 2014 .

[62]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[63]  P. Molnár,et al.  The Effect of Non-Trading Days on Volatility Forecasts in Equity Markets , 2017 .

[64]  Jana Eklund,et al.  Forecast Combination and Model Averaging Using Predictive Measures , 2005 .

[65]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[66]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[67]  Michael McAleer,et al.  How has volatility in metals markets changed? , 2008, Math. Comput. Simul..