Constrained parameter optimisation: equality constraints

Several methods have been proposed for handling constraints by evolutionary algorithms for parameter optimisation problems. These methods include those based on penalty functions, preservation of feasibility, decoders, repair algorithms, as well as some hybrid techniques. We investigate a new approach for handling equality constraints that adaptively controls the value of tolerance value /spl delta/ added to the equality constraints. The preliminary results show that the proposed technique works very well on selected test cases.

[1]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[2]  Z. Michalewicz,et al.  Your brains and my beauty: parent matching for constrained optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[3]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[4]  Alice E. Smith,et al.  Genetic Optimization Using A Penalty Function , 1993, ICGA.

[5]  Z. Michalewicz Genetic Algorithms , Numerical Optimization , and Constraints , 1995 .

[6]  Michael A. Shanblatt,et al.  A two-phase optimization neural network , 1992, IEEE Trans. Neural Networks.

[7]  Cornelia Kappler,et al.  Are Evolutionary Algorithms Improved by Large Mutations? , 1996, PPSN.

[8]  Hyun Myung,et al.  Preliminary Investigations into a Two-State Method of Evolutionary Optimization on Constrained Problems , 1995, Evolutionary Programming.

[9]  Patrick D. Surry,et al.  A Multi-objective Approach to Constrained Optimisation of Gas Supply Networks: the COMOGA Method , 1995, Evolutionary Computing, AISB Workshop.

[10]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[11]  John E. Beasley,et al.  Constraint Handling in Genetic Algorithms: The Set Partitioning Problem , 1998, J. Heuristics.

[12]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[13]  Zbigniew Michalewicz,et al.  Evolutionary optimization of constrained problems , 1994 .

[14]  Zbigniew Michalewicz,et al.  Boundary Operators for Constrained Parameter Optimization Problems , 1997, ICGA.

[15]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[16]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[17]  Zbigniew Michalewicz,et al.  Handling Constraints in Genetic Algorithms , 1991, ICGA.

[18]  Marc Schoenauer,et al.  Constrained GA Optimization , 1993, ICGA.

[19]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[20]  Zbigniew Michalewicz,et al.  Evolutionary Computation at the Edge of Feasibility , 1996, PPSN.

[21]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[22]  Edmund M. A. Ronald,et al.  When Selection Meets Seduction , 1995, ICGA.

[23]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[24]  Zbigniew Michalewicz,et al.  A Note on Usefulness of Geometrical Crossover for Numerical Optimization Problems , 1996, Evolutionary Programming.

[25]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[26]  Jong-Hwan Kim Preliminary Investigation into a Two-Stage Method of Eovolutionary Optimization on Constrained Probelms , 1995 .