Optimization Algorithms for Kernel Methods

[1]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[2]  Chih-Jen Lin,et al.  A formal analysis of stopping criteria of decomposition methods for support vector machines , 2002, IEEE Trans. Neural Networks.

[3]  Vladimír Smutný,et al.  Alignment of Sewerage Inspection Videos for Their Easier Indexing , 2003, ICVS.

[4]  Thorsten Joachims,et al.  Making large-scale support vector machine learning practical , 1999 .

[5]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[6]  R. Fletcher Practical Methods of Optimization , 1988 .

[7]  Robert P. W. Duin,et al.  Data domain description using support vectors , 1999, ESANN.

[8]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[9]  Harris Drucker,et al.  Learning algorithms for classification: A comparison on handwritten digit recognition , 1995 .

[10]  David R. Musicant,et al.  Successive overrelaxation for support vector machines , 1999, IEEE Trans. Neural Networks.

[11]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[13]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[14]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[15]  Václav Hlavác,et al.  Ten Lectures on Statistical and Structural Pattern Recognition , 2002, Computational Imaging and Vision.

[16]  Václav Hlavác,et al.  Simple Solvers for Large Quadratic Programming Tasks , 2005, DAGM-Symposium.

[17]  S. Sathiya Keerthi,et al.  A fast iterative nearest point algorithm for support vector machine classifier design , 2000, IEEE Trans. Neural Networks Learn. Syst..

[18]  S. Sathiya Keerthi,et al.  Convergence of a Generalized SMO Algorithm for SVM Classifier Design , 2002, Machine Learning.

[19]  Nello Cristianini,et al.  The Kernel-Adatron Algorithm: A Fast and Simple Learning Procedure for Support Vector Machines , 1998, ICML.

[20]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[21]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[22]  Václav Hlavác,et al.  Multi-class support vector machine , 2002, Object recognition supported by user interaction for service robots.

[23]  Jason Weston,et al.  Multi-Class Support Vector Machines , 1998 .

[24]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[25]  V. N. Malozemov,et al.  Finding the Point of a Polyhedron Closest to the Origin , 1974 .

[26]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[27]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[28]  Jue Wang,et al.  A generalized S-K algorithm for learning v-SVM classifiers , 2004, Pattern Recognit. Lett..

[29]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[30]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[31]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[32]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[33]  Václav Hlavác,et al.  An iterative algorithm learning the maximal margin classifier , 2003, Pattern Recognit..

[34]  Václav Hlavác,et al.  Greedy Algorithm for a Training Set Reduction in the Kernel Methods , 2003, CAIP.

[35]  G. Wahba Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV , 1999 .

[36]  David G. Stork,et al.  Pattern Classification , 1973 .

[37]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[38]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[39]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[40]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[41]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[42]  S. Sathiya Keerthi,et al.  Improvements to Platt's SMO Algorithm for SVM Classifier Design , 2001, Neural Computation.

[43]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[44]  Chao He,et al.  Probability Density Estimation from Optimally Condensed Data Samples , 2003, IEEE Trans. Pattern Anal. Mach. Intell..