The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators.

Digital addressing of the electrical signal in spatial light modulators, as it is the case in present liquid crystal on silicon (LCoS) displays, may lead to temporal phase fluctuations in the optical beam. In diffractive optics applications a reduction in the modulation diffraction efficiency may be expected. Experimental work is done characterizing the fluctuations amplitude and phase depth for three different digital addressing sequences. We propose a diffractive model to evaluate the modulation diffraction efficiency of phase diffractive optical elements (DOEs) in the presence of phase fluctuations. Best results are obtained for the most stable electrical sequence even though its phase depth is as small as 280 degrees . The results show good agreement with the numerical calculation given by the model.

[1]  Elisabet Pérez-Cabré,et al.  Chromatic compensation of programmable Fresnel lenses. , 2006, Optics express.

[2]  F. Yu,et al.  Simple method for measuring phase modulation in liquid crystal televisions , 1994 .

[3]  Jörgen Bengtsson,et al.  Diffraction-based determination of the phase modulation for general spatial light modulators. , 2006, Applied optics.

[4]  A Márquez,et al.  Programmable apodizer to compensate chromatic aberration effects using a liquid crystal spatial light modulator. , 2005, Optics express.

[5]  R. Chipman,et al.  Interpretation of Mueller matrices based on polar decomposition , 1996 .

[6]  A Márquez,et al.  Achromatic diffractive lens written onto a liquid crystal display. , 2006, Optics letters.

[7]  Francis T. S. Yu,et al.  Self-organizing optical neural network for unsupervised learning , 1990 .

[8]  Jeffrey A. Davis,et al.  Polarization eigenstates for twisted-nematic liquid-crystal displays. , 1998, Applied optics.

[9]  Juan Campos,et al.  Effects of Amplitude and Phase Mismatching Errors in the Generation of a Kinoform for Pattern Recognition , 1995 .

[10]  Frank Wyrowski,et al.  Diffractive Optics for Industrial and Commercial Applications , 1997 .

[11]  Claudio Iemmi,et al.  Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display. , 2004, Applied optics.

[12]  J. L. Pezzaniti,et al.  Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states. , 1993, Optics letters.

[13]  Claudio Iemmi,et al.  Time-resolved Mueller matrix analysis of a liquid crystal on silicon display. , 2008, Applied optics.

[14]  A Márquez,et al.  Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display. , 2008, Optics letters.

[15]  Claudio Iemmi,et al.  Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model , 2001 .

[16]  I. Moreno,et al.  Influence of the temporal fluctuations phenomena on the ECB LCoS performance , 2009, Optical Engineering + Applications.

[17]  E Tajahuerce,et al.  Use of polar decomposition of Mueller matrices for optimizing the phase response of a liquid-crystal-on-silicon display. , 2008, Optics express.

[18]  A Márquez,et al.  Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization. , 2008, Optics express.

[19]  H H Arsenault,et al.  Phase calibration and applications of a liquid-crystal spatial light modulator. , 1995, Applied optics.

[20]  A Márquez,et al.  Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics. , 2008, Optics express.

[21]  Claudio Iemmi,et al.  Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display , 2008 .

[22]  Wolfgang Osten,et al.  Evaluation and application of spatial light modulators for optical metrology , 2005 .

[23]  M. Yzuel,et al.  Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. Optimization of the modulation diffraction efficiency. , 2005, Optics express.

[24]  Demetri Psaltis,et al.  Holographic Data Storage , 1998, Computer.

[25]  T. Ishinabe,et al.  Reflective Liquid-Crystal Displays , 2002 .

[26]  R. Juday Optimal realizable filters and the minimum Euclidean distance principle. , 1993, Applied optics.

[27]  N. Collings,et al.  The Silicon Backplane Design for an LCOS Polarization-Insensitive Phase Hologram SLM , 2008, IEEE Photonics Technology Letters.

[28]  Russell A Chipman,et al.  Polarimetric characterization of liquid-crystal-on-silicon panels. , 2006, Applied optics.

[29]  Bahaa E. A. Saleh,et al.  Theory and design of the liquid crystal TV as an optical spatial phase modulator , 1990 .

[30]  R D Juday,et al.  Generality of matched filtering and minimum Euclidean distance projection for optical pattern recognition. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Andreas Hermerschmidt,et al.  Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution , 2007, SPIE Optics + Optoelectronics.

[32]  Elisabet Pérez-Cabré,et al.  Dynamic compensation of chromatic aberration in a programmable diffractive lens. , 2006, Optics express.

[33]  Colin Soutar,et al.  Measurement of the complex transmittance of the Epson liquid crystal television , 1994 .