Comparison of the Spatial Landmark Scatter of Various 3D Digitalization Methods

AimThe aim of this study was to compare four different threedimensional digitalization methods on the basis of the complex anatomical surface of a cleft lip and palate plaster cast, and to ascertain their accuracy when positioning 3D landmarks.Material and MethodsA cleft lip and palate plaster cast was digitalized with the SCAN3D® photo-optical scanner, the OPTIX 400S® laser-optical scanner, the Somatom Sensation 64® computed tomography system and the MicroScribe® MLX 3-axis articulated-arm digitizer. First, four examiners appraised by individual visual inspection the surface detail reproduction of the three non-tactile digitalization methods in comparison to the reference plaster cast. The four examiners then localized the landmarks five times at intervals of 2 weeks. This involved simply copying, or spatially tracing, the landmarks from a reference plaster cast to each model digitally reproduced by each digitalization method. Statistical analysis of the landmark distribution specific to each method was performed based on the 3D coordinates of the positioned landmarks.ResultsVisual evaluation of surface detail conformity assigned the photo-optical digitalization method an average score of 1.5, the highest subjectively-determined conformity (surpasssing computer tomographic and laser-optical methods). The tactile scanning method revealed the lowest degree of 3D landmark scatter, 0.12 mm, and at 1.01 mm the lowest maximum 3D landmark scatter; this was followed by the computer tomographic, photo-optical and laser-optical methods (in that order).ConclusionsThis study demonstrates that the landmarks’ precision and reproducibility are determined by the complexity of the reference-model surface as well as the digital surface quality and individual ability of each evaluator to capture 3D spatial relationships. The differences in the 3D-landmark scatter values and lowest maximum 3D-landmark scatter between the best and the worst methods showed minor differences. The measurement results in this study reveal that it is not the method’s precision but rather the complexity of the object analysis being planned that should determine which method is ultimately employed.ZusammenfassungZielDas Ziel der vorliegenden Studie bestand darin, anhand der anatomisch komplexen Oberfläche eines Lippen-Kiefer-Gaumen-(LKG-)Spalten-Gipsmodells vier verschiedene räumliche Digitalisierungsverfahren einander gegenüberzustellen und deren Genauigkeit bei der 3-D-Messpunktpositionierung festzustellen.Material und MethodikDazu wurde ein LKG-Spalten-Gipsmodell mit dem lichtoptischen Scanner SCAN3D®, dem laseroptischen Scanner OPTIX 400S®, dem Computertomographen Somatom Sensation 64® und dem dreiachsigen taktilen Digitalisierungsarm MicroScribe® MLX digitalisiert. Zunächst wurden durch vier Auswerter für die drei nichttaktilen Verfahren die subjektive Oberflächendetailtreue im Vergleich zum Referenz-Gipsmodell visuell beurteilt und benotet. Anschließend wurde von den vier Auswertern eine Messpunktpositionierung in fünf Durchgängen im Abstand von 2 Wochen wiederholt durchgeführt. Dabei sollten die Messpunktpositionen lediglich von einem Referenzmodell aus Gips auf das durch das entsprechende Verfahren digital reproduzierte Modell übertragen bzw. räumlich ertastet werden. Anhand der räumlichen Koordinaten der gesetzten Messpunkte erfolgte die statistische Prüfung der verfahrensspezifischen Messpunktstreuung.ErgebnisseDie visuelle Beurteilung der Oberflächendetailtreue bescheinigte der lichtoptischen Digitalisierungsmethode mit der Durchschnittsnote 1,5 vor dem computertomographischen und laseroptischen Verfahren die höchste subjektiv wahrgenommene Genauigkeit. Für die taktile Abtastung der Messpunkte konnte mit 0,12 mm die geringste räumliche Messpunktstreuung und mit 1,01 mm die kleinste maximale räumliche Messpunktabweichung festgestellt werden. Danach folgten das computertomographische, lichtoptische und laseroptische Verfahren.SchlussfolgerungenDie vorliegende Studie verdeutlicht, dass die Genauigkeit und Reproduzierbarkeit der Messpunkte nicht nur von der Komplexität der Referenzmodelloberfläche, sondern auch von der digitalen Oberflächengüte und des damit verbundenen individuellen räumlichen Erfassungsvermögens des einzelnen Auswerters bestimmt wird. Die Differenzen der Messwerte der räumlichen Messpunktabweichung und die der kleinsten maximalen räumlichen Messpunktabweichung zwischen dem besten und dem schlechtesten Verfahren zeigten nur geringe Unterschiede. Die Ergebnisse ließen den Schluss zu, dass nicht die Methodengenauigkeit, sondern die Komplexität der durchzuführenden Objektanalyse die Verfahrenswahl bestimmen sollte.

[1]  H Takasaki,et al.  Moiré topography. , 1973, Applied optics.

[2]  H Boersma,et al.  Three-Dimensional Analysis of Dental Casts by Means of the Optocom , 1972, Journal of dental research.

[3]  J. Gazdag,et al.  A modified fourier transform method for multiple scattering calculations in a plane parallel mie atmosphere. , 1970, Applied optics.

[4]  C. Bourauel,et al.  Three-Dimensional Analysis of Morphological Changes in the Maxilla of Patients with Cleft Lip and Palate , 2002 .

[5]  O. W. Cheffins,et al.  CLOSE‐RANGE PHOTOGRAMMETRY APPLIED TO RESEARCH IN ORTHODONTICS , 2006 .

[6]  H Rydén,et al.  Tooth position measurements on dental casts using holographic images. , 1982, American journal of orthodontics.

[7]  P G Jost-Brinkmann,et al.  Applications of three-dimensionally scanned models in orthodontics. , 2007, International journal of computerized dentistry.

[8]  P. Burke,et al.  Stereo-photogrammetry of the face. , 1967, Report of the congress. European Orthodontic Society.

[9]  H. Yatani,et al.  New evaluation method by microfocus radiograph CT for 3D assessment of internal adaptation of all-ceramic crowns. , 2005, Dental materials journal.

[10]  Kazuo Hayashi,et al.  Three-dimensional analysis of orthodontic tooth movement based on XYZ and finite helical axis systems. , 2007, European journal of orthodontics.

[11]  Robin Richards,et al.  A comparison between computerized tomography, magnetic resonance imaging, and laser scanning for capturing 3-dimensional data from a natural ear to aid rehabilitation. , 2006, The International journal of prosthodontics.

[12]  Haruaki Hayasaki,et al.  A new way of analyzing occlusion 3 dimensionally. , 2005, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[13]  Z. Šmahel,et al.  Three-Dimensional Analysis of Maxillary Dental Casts Using Fourier Transform Profilometry: Precision and Reliability of the Measurement , 2004, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[14]  A Jäger,et al.  Construction and testing of a computer-based intraoral laser scanner for determining tooth positions. , 2000, Medical engineering & physics.

[15]  T Kuroda,et al.  A 3D computer-aided design system applied to diagnosis and treatment planning in orthodontics and orthognathic surgery. , 1999, European journal of orthodontics.

[16]  E R Hewlett,et al.  Accuracy testing of three-dimensional digitizing systems. , 1992, Dental materials : official publication of the Academy of Dental Materials.

[17]  Cha Bk,et al.  Applications of three-dimensionally scanned models in orthodontics. , 2007 .

[18]  F. H. Beard,et al.  Stereophotogrammetry of the face. A preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. , 1967, American journal of orthodontics.

[19]  Jianwei Zhang,et al.  Vision Processing for Realtime 3-D Data Acquisition Based on Coded Structured Light , 2008, IEEE Transactions on Image Processing.

[20]  K F Moos,et al.  A three-dimensional imaging system for archiving dental study casts: a preliminary report. , 1997, The International journal of adult orthodontics and orthognathic surgery.

[21]  C. Bourauel,et al.  Two- or Three-Dimensional Cast Analysis in Patients with Cleft Lip and Palate? , 2001, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[22]  R Darin Ellis,et al.  Development and human factors analysis of neuronavigation vs. augmented reality. , 2004, Studies in health technology and informatics.

[23]  P. Dijkstra,et al.  Reliability of Linear Measurements on a Virtual Bilateral Cleft Lip and Palate Model , 2006, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[24]  F C van Ginkel,et al.  Quantification of facial morphology using stereophotogrammetry--demonstration of a new concept. , 1996, Journal of dentistry.

[25]  S. Peleg,et al.  Facet Orientation in the Thoracolumbar Spine: Three-dimensional Anatomic and Biomechanical Analysis , 2004, Spine.

[26]  Miroslav Peterka,et al.  Three-Dimensional Morphology of the Palate in Subjects with Isolated Cleft Palate at the Stage of Permanent Dentition , 2003 .

[27]  E. Cabanis,et al.  Three‐dimensional procrustes analysis of modern human craniofacial form , 2007, Anatomical record.

[28]  A Dastane,et al.  Development and evaluation of a new 3-D digitization and computer graphic system to study the anatomic tissue and restoration surfaces. , 1996, Journal of oral rehabilitation.

[29]  Christoph Bourauel,et al.  Three-dimensional analysis of morphological changes in the maxilla of patients with cleft lip and palate. , 2002, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[30]  A. M. Strauss,et al.  Dental changes evaluated with a 3D computer-assisted model analysis after long-term tongue retaining device wear in OSA patients , 2008, Sleep and Breathing.

[31]  S Thielke,et al.  A method for true coordinate three-dimensional measurement of casts using a measuring microscope. , 1998, The Journal of prosthetic dentistry.

[32]  S. Haßfeld,et al.  Precision of Landmark Positioning on Digitized Models from Patients with Cleft Lip and Palate , 2006, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[33]  Erik Cattrysse,et al.  Intra-articular kinematics of the upper limb joints: a six degrees of freedom study of coupled motions , 2005, Ergonomics.

[34]  H Rydén,et al.  The holodent system, a new technique for measurement and storage of dental casts. , 1992, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[35]  M E Brosky,et al.  Evaluation of dental arch reproduction using three-dimensional optical digitization. , 2003, The Journal of prosthetic dentistry.

[36]  S. Berkowitz,et al.  Stereophotogrammerty of serial casts of cleft palate. , 1968, The Angle orthodontist.

[37]  Adrian Iftene,et al.  Augmented Reality , 2010, 2010 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[38]  B. Y Huang,et al.  A method of indirect registration of the coordinates of condylar points with a six-degree-of-freedom jaw tracker , 2002, Journal of Neuroscience Methods.

[39]  N. Robertson Contour Photography , 1976, British journal of orthodontics.

[40]  Werner Hense Nachuntersuchung kieferorthopädisch behandelter Patienten mit dem Modell-Messgerät Modellmat und dem Computerprogramm "Modell" , 1984 .