FUNDC2, a mitochondrial outer membrane protein, mediates triple-negative breast cancer progression via the AKT/GSK3β/GLI1 pathway

[1]  Jinpyo Hong,et al.  Up-regulation of CPNE1 Appears to Enhance Cancer Progression in HER2-positive and Luminal A Breast Cancer Cells , 2022, AntiCancer Research.

[2]  Qi Zhang,et al.  FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion , 2022, Nature Communications.

[3]  Yue Zhao,et al.  High phosphorylated cyclin-dependent kinase 2 expression indicates poor prognosis of luminal androgen receptor triple-negative breast cancer , 2022, Acta biochimica et biophysica Sinica.

[4]  Yufeng Liu,et al.  iTRAQ-Based Proteomic Analysis Reveals Potential Serum Biomarkers for Pediatric Non-Hodgkin’s Lymphoma , 2022, Frontiers in Oncology.

[5]  Jinqiu Zhang,et al.  miR-1205/DNAJB1 reverses docetaxel chemoresistance in human triple negative breast carcinoma cells via regulation of mutp53/TAp63 signaling , 2021, Acta biochimica et biophysica Sinica.

[6]  M. Lulli,et al.  The Hedgehog-GLI Pathway Regulates MEK5-ERK5 Expression and Activation in Melanoma Cells , 2021, International journal of molecular sciences.

[7]  Liang Chen,et al.  Hedgehog/GLI1 signaling pathway regulates the resistance to cisplatin in human osteosarcoma , 2021, Journal of Cancer.

[8]  C. Kelly,et al.  Overview of recent advances in metastatic triple negative breast cancer , 2021, World journal of clinical oncology.

[9]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[10]  S. Badve,et al.  Advances in Therapeutic Approaches for Triple-Negative Breast Cancer. , 2020, Clinical breast cancer.

[11]  Zhengrong Zhang,et al.  AIM2 inhibits colorectal cancer cell proliferation and migration through suppression of Gli1 , 2020, Aging.

[12]  Annarita Granaglia,et al.  Pathology of Triple Negative Breast Cancer. , 2020, Seminars in cancer biology.

[13]  A. Zekri,et al.  Expression analysis of vimentin and the related lncRNA network in breast cancer. , 2020, Experimental and molecular pathology.

[14]  H. Liang,et al.  Sonic Hedgehog/Gli1 Signaling Pathway Regulates Cell Migration and Invasion via Induction of Epithelial-to-mesenchymal Transition in Gastric Cancer , 2020, Journal of Cancer.

[15]  M. Cristofanilli,et al.  The Landscape of Targeted Therapies in TNBC , 2020, Cancers.

[16]  W. Neufeld-Kaiser,et al.  Deletion of FUNDC2 and CMC4 on Chromosome Xq28 Is Sufficient to Cause Hypergonadotropic Hypogonadism in Men , 2020, bioRxiv.

[17]  Peijun Wang,et al.  CPNE1 predicts poor prognosis and promotes tumorigenesis and radioresistance via the AKT singling pathway in triple‐negative breast cancer , 2020, Molecular carcinogenesis.

[18]  R. Malla,et al.  Prognostic role of Hedgehog GLI1 signaling pathway in aggressive and metastatic breast cancers. , 2020, Current drug metabolism.

[19]  Weixiong Yang,et al.  A review of current progress in triple-negative breast cancer therapy , 2020, Open medicine.

[20]  L. Jie,et al.  Recent treatment progress of triple negative breast cancer. , 2019, Progress in biophysics and molecular biology.

[21]  G. Luo,et al.  Knockdown of ZBTB7A inhibits cell proliferation of breast cancer through regulating the ubiquitination of estrogen receptor alpha. , 2019, Life sciences.

[22]  Quan Chen,et al.  FUNDC2 regulates platelet activation through AKT/GSK-3β/cGMP axis. , 2019, Cardiovascular research.

[23]  B. Ramaswamy,et al.  The Hedgehog Signaling Pathway: A Viable Target in Breast Cancer? , 2019, Cancers.

[24]  Hui Zhang,et al.  GLI1 overexpression promotes gastric cancer cell proliferation and migration and induces drug resistance by combining with the AKT-mTOR pathway. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[25]  S. Mathoulin-Pélissier,et al.  Time trends of overall survival among metastatic breast cancer patients in the real-life ESME cohort. , 2018, European journal of cancer.

[26]  A. Chambery,et al.  Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers , 2017, British Journal of Cancer.

[27]  J. O’Shaughnessy,et al.  The hedgehog pathway in triple‐negative breast cancer , 2016, Cancer medicine.

[28]  A. Aboussekhra,et al.  Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh , 2016, Scientific Reports.

[29]  F. André,et al.  Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. , 2012, Annals of oncology : official journal of the European Society for Medical Oncology.

[30]  P. Xue,et al.  Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells , 2012, Nature Cell Biology.

[31]  Masao Tanaka,et al.  Hedgehog signaling pathway mediates the progression of non‐invasive breast cancer to invasive breast cancer , 2011, Cancer science.

[32]  J. Reis-Filho,et al.  Histological and molecular types of breast cancer: is there a unifying taxonomy? , 2009, Nature Reviews Clinical Oncology.

[33]  C. Morris,et al.  Double complex mutations involving F8 and FUNDC2 caused by distinct break‐induced replication , 2007, Human mutation.

[34]  Heping Cheng,et al.  Mitochondrial PIP3-binding protein FUNDC2 supports platelet survival via AKT signaling pathway , 2018, Cell Death & Differentiation.