A review of impact testing on marine composite materials: Part I – Marine impacts on marine composites

Abstract Composite materials are now used throughout the marine industry but their susceptibility to impact events is still an unresolved problem. There is a huge body of work in the area, succinctly summarised here, but the great majority concerns impact events and composite materials more relevant to the aeronautical industry. A discussion of the complexity of the problem in terms of damage and dependence on the many material and impact event parameters shows why there is a need for a review of work specifically considering ‘impact on marine composites’ due to the distinctive impact events and materials of marine applications. Marine impact scenarios are discussed and comparisons between composite and other construction methods made. Together with parts II and III, this paper gives a comprehensive review of ‘marine impact on marine composites’, providing a valuable resource for the marine industry and research fields.

[1]  P. Mollicone,et al.  QSI Response of Foam–Filled Composite Marine Sandwich Hull Panels: Simulation and Experiment , 2014 .

[2]  Andreas T. Echtermeyer,et al.  Integrating Durability in Marine Composite Certification , 2014 .

[3]  D. Chalmers The properties and uses of marine structural materials , 1988 .

[4]  Dominique Choqueuse,et al.  Development of a Test to Simulate Wave Impact on Composite Sandwich Marine Structures , 2013 .

[5]  R. A. W. Mines,et al.  Product Case Studies for Polymer Composite Sandwich Beam Construction , 1999 .

[6]  L. Soares Impact behaviour of GRP, aluminium and steel plates , 2009 .

[7]  Brian Hayman,et al.  Approaches to Damage Assessment and Damage Tolerance for FRP Sandwich Structures , 2007 .

[8]  Peter Davies,et al.  Damage development in thick composite tubes under impact loading and influence on implosion pressure: experimental observations , 2005 .

[9]  Wesley J. Cantwell,et al.  The low velocity impact response of foam-based sandwich panels , 2012 .

[10]  Kunigal N. Shivakumar,et al.  Prediction of Impact Force and Duration Due to Low-Velocity Impact on Circular Composite Laminates , 1985 .

[11]  S. Abrate Impact on Laminated Composite Materials , 1991 .

[12]  Andrey Shipsha,et al.  Fatigue Behavior of Foam Core Sandwich Beams with Sub-Interface Impact Damage , 2003 .

[13]  Sarah E. Mouring,et al.  Modelling impact damage in marine composite panels , 2009 .

[14]  N. Merah,et al.  Impact behavior and finite element prediction of the compression after impact strength of foam/vinylester-glass composite sandwiches , 2014 .

[15]  G. Dvorak,et al.  Protection of Sandwich Plates from Low-velocity Impact , 2006 .

[16]  L. S. Sutherland,et al.  Effects of laminate thickness and reinforcement type on the impact behaviour of E-glass/polyester laminates , 1999 .

[17]  L. S. Sutherland,et al.  Scaling of impact on low fibre-volume glass–polyester laminates , 2007 .

[18]  Dennj De Meo,et al.  Fracture modes, damage tolerance and failure mitigation in marine composites , 2015 .

[19]  Andrey Shipsha,et al.  Compression-after-Impact Strength of Sandwich Panels with Core Crushing Damage , 2005 .

[20]  Andrey Shipsha,et al.  Static indentation and unloading response of sandwich beams , 2004 .

[21]  Murray L. Scott,et al.  Review of delamination predictive methods for low speed impact of composite laminates , 2004 .

[22]  C. M. Muscat–Fenech,et al.  Characterizing QSLVII Damage of Composite Sandwich Hulls , 2014 .

[23]  Yasumi Toyama Drift-wood collision load on bow structure of high-speed vessels , 2009 .

[24]  Paul J. Hogg,et al.  The role of reinforcement architecture on impact damage mechanisms and post-impact compression behaviour , 1996, Journal of Materials Science.

[25]  K. E. Simmonds,et al.  Low-Velocity Impact Response of Foam-Core Sandwich Composites , 1992 .

[26]  Robert Mines Impact Energy Absorption of Polymer Composite Sandwich Beams , 1997 .

[27]  I. Daniel,et al.  Response and Damage Tolerance of Composite Sandwich Structures under Low Velocity Impact , 2012 .

[28]  S. Bartus A review : Impact damage of composite materials , 2007 .

[29]  Stefan Hallström,et al.  Failure Mechanisms and Modelling of Impact Damage in Sandwich Beams - A 2D Approach: Part II - Analysis and Modelling , 2003 .

[30]  P. T. Pedersen,et al.  Minimum Plate Thickness in High-Speed Craft , 1998 .

[31]  S. Lewis,et al.  Size and scale effects in composites: II. Unidirectional laminates , 1999 .

[32]  Gin Boay Chai,et al.  A review of low-velocity impact on sandwich structures , 2011 .

[33]  Dan Zenkert,et al.  Damage Tolerance of Naval Sandwich Panels , 2009 .

[34]  C. Soares,et al.  The use of quasi-static testing to obtain the low-velocity impact damage resistance of marine GRP laminates , 2012 .

[35]  G. Zhou,et al.  Prediction of impact damage thresholds of glass fibre reinforced laminates , 1995 .

[36]  C. M. Muscat–Fenech,et al.  Impact damage testing on composite marine sandwich panels, part 1: Quasi-static indentation , 2014 .

[37]  G. Dvorak,et al.  Enhancement of low velocity impact damage resistance of sandwich plates , 2005 .

[38]  M. Richardson,et al.  Review of low-velocity impact properties of composite materials , 1996 .

[39]  R. A. Shenoi,et al.  Size and scale effects in composites: I. Literature review , 1999 .

[40]  Yail J. Kim,et al.  Composite hull structures subjected to wave-induced slamming impact , 2014 .

[41]  Christophe Baley,et al.  Improved impact performance of marine sandwich panels using through-thickness reinforcement: Experimental results , 2010 .

[42]  G. Zhou Static behaviour and damage of thick composite laminates , 1996 .

[43]  M. H. Arvidson,et al.  Hull Material Evaluation for Navy 44 Sail Training Craft , 2001 .

[44]  R. A. Shenoi,et al.  A generic methodology for postdamage decisions , 2006 .

[45]  Brian Hayman,et al.  Damage tolerance assessment of composite sandwich panels with localised damage , 2005 .

[46]  Serge Abrate,et al.  Impact engineering of composite structures , 2011 .

[47]  N. Jones,et al.  Approximate elastic-plastic analysis of the static and impact behaviour of polymer composite sandwich beams , 1995 .

[48]  Adrian P. Mouritz,et al.  Review of advanced composite structures for naval ships and submarines , 2001 .

[49]  C. Soares,et al.  Impact tests on woven-roving E-glass/polyester laminates , 1999 .

[50]  C. Oskay,et al.  Modeling compression-after-impact response of polymer matrix composites subjected to seawater aging , 2012 .

[51]  M. G. Bader,et al.  The effect of notches and specimen geometry on the pendulum impact strength of uniaxial cfrp , 1974 .

[52]  G.A.O. Davies,et al.  Impact response of thick glass fibre reinforced polyester laminates , 1995 .

[53]  M. Tarfaoui,et al.  Scale and Size Effects on Dynamic Response and Damage of Glass/Epoxy Tubular Structures , 2007 .

[54]  Andreas T. Echtermeyer,et al.  Damage development in stitch bonded GFRP composite plates under low velocity impact: Experimental and numerical results , 2015 .

[55]  L. J. Greaves,et al.  5 – Damage resistance and tolerance of thick laminated woven roving GFRP plates subjected to low-velocity impact , 2000 .

[56]  L. Guillaumat,et al.  The effect of water immersion ageing on low-velocity impact behaviour of woven aramid–glass fibre/epoxy composites , 2004 .

[57]  Y. Grohens,et al.  Application of Interlaminar Tests to Marine Composites. Relation between Glass Fibre/Polymer Interfaces and Interlaminar Properties of Marine Composites , 2004 .

[58]  A. P. Mouritz,et al.  Skin Wrinkling of Impact Damaged Sandwich Composite , 1999 .

[59]  V. Lopresto,et al.  Damage Mechanisms and Energy Absorption in Composite Laminates Under Low Velocity Impact Loads , 2013 .

[60]  John Morton,et al.  The impact resistance of composite materials — a review , 1991 .

[61]  L. S. Sutherland The effects of test parameters on the impact response of glass reinforced plastic using an experimental design approach , 2003 .

[62]  Serge Abrate,et al.  Impact on Composite Structures , 1998 .

[63]  H. Devaux,et al.  Design of Racing Yachts for Durability , 2014 .

[64]  G. Dvorak,et al.  Dynamic Response of Sandwich Plates to Medium-velocity Impact , 2005 .

[65]  Sarah E. Mouring,et al.  Current research into modelling of shock damage to large scale composite panels , 2006 .

[66]  G. Dvorak,et al.  Impact and Blast Resistance of Sandwich Plates , 2009 .

[67]  Vincenzo Crupi,et al.  Low-velocity impact strength of sandwich materials , 2011 .

[68]  L. S. Sutherland,et al.  Contact indentation of marine composites , 2005 .

[69]  Jens Kjær Jørgensen,et al.  Numerical/Experimental Study of the Impact and Compression after Impact on GFRP Composite for Wind/Marine Applications☆ , 2016 .

[70]  C. De Marco Muscat-Fenech,et al.  Impact damage testing on composite marine sandwich panels. Part 2: Instrumented drop weight , 2014 .

[71]  R. Mines Strain Rate Effects in Crushable Structural Foams , 2007 .

[72]  S. Lewis,et al.  Size and scale effects in composites: III. Woven-roving laminates , 1999 .

[73]  L. Sutherland A review of impact testing on marine composite materials: Part II – Impact event and material parameters , 2018 .

[74]  C. Soares,et al.  Effect of laminate thickness and of matrix resin on the impact of low fibre-volume, woven roving E-glass composites , 2004 .

[75]  R. M. Cripps Design and Development of Lifeboats - Damage Evaluation and Repair of Composite Structures , 2005 .

[76]  G. Epasto,et al.  Theoretical and experimental analysis for the impact response of glass fibre reinforced aluminium honeycomb sandwiches , 2018 .