QUADRUPED OPTIMUM GAITS ANALYSIS FOR PLANETARY EXPLORATION

Leg compliance, gravity and ground have a significant impact on the performance and gait characteristics of a quadruped robot. This paper presents results obtained using a planar lumped parameter model of a quadruped robot and an extensive research scheme to determine optimum design parameters for a quadruped moving in different gravity environments. Hildebrand diagrams are used to classify quadruped robot gaits. In addition, an optimization procedure using either MathWorks fmincon or a Differential Evolutionary (DE) algorithm is employed to determine the optimum motion and robot physical parameters related to energy efficiency. Using “multiple gait graphs”, the effects of leg compliance, gravity and ground inclination are determined.

[1]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[2]  Nadine N. Tschichold-Gürman,et al.  The development of a robot terrain interaction system for walking machines , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[3]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[4]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[5]  Inna Sharf,et al.  Literature survey of contact dynamics modelling , 2002 .

[6]  M. Cartmill,et al.  Support polygons and symmetrical gaits in mammals , 2002 .

[7]  Steven Dubowsky,et al.  Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers , 2004, IEEE Transactions on Robotics.

[8]  Sabine Renous,et al.  Contribution to the analysis of gaits: practical elements to complement the Hildebrand method. , 2004, Comptes rendus biologies.

[9]  Matthew Heverly A Wheel-On-Limb Rover for Lunar Operations , 2007 .

[10]  S. Pinzke,et al.  Gait and force analysis of provoked pig gait on clean and fouled concrete surfaces. , 2009 .

[11]  Evangelos Papadopoulos,et al.  Bio-inspired design of electrically-driven bounding quadrupeds via parametric analysis , 2009 .

[12]  Frank Kirchner,et al.  SpaceClimber: Development of a Six-Legged Climbing Robot for Space Exploration , 2010, ISR/ROBOTIK.

[13]  Martin Görner,et al.  Towards an Autonomous Walking Robot for Planetary Surfaces , 2010 .

[14]  R. Siegwart,et al.  TOWARDS WALKING ON MARS , 2011 .

[15]  C. Webster Animals in Motion , 2012 .

[16]  Chen Li,et al.  A Terradynamics of Legged Locomotion on Granular Media , 2013, Science.

[17]  James F. Bell,et al.  The Martian Surface: Composition, Mineralogy, and Physical Properties , 2014 .