A relaxation method for large eigenvalue problems, with an application to flow stability analysis

Linear stability analysis of fluid flows usually involves the numerical solution of large eigenvalue problems. We present a spectral transformation allowing the computation of the least stable eigenmodes in a prescribed frequency range, based on the filtering of the linearized equations of motion. This "shift-relax" method has the advantage of low memory requirements and is therefore suitable for large two- or three-dimensional problems. For demonstration purposes, this new method is applied to compute eigenmodes of a compressible jet.

[1]  P. Monkewitz,et al.  LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS , 1990 .

[2]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[3]  Jörn Sesterhenn,et al.  Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes , 2008, Journal of Fluid Mechanics.

[4]  C. Bogey Three-dimensional non-refrective boundary conditions for acoustic simulation : far field formulation and validation test cases , 2002 .

[5]  Dan S. Henningson,et al.  Global two-dimensional stability measures of the flat plate boundary-layer flow , 2008 .

[6]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[7]  Richard B. Lehoucq,et al.  Large‐scale eigenvalue calculations for stability analysis of steady flows on massively parallel computers , 2001 .

[8]  Kenneth J. Ruschak,et al.  MODELING ARTIFICIAL BOUNDARY CONDITIONS FOR COMPRESSIBLE FLOW , 2005 .

[9]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[10]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[11]  O. Marxen,et al.  Steady solutions of the Navier-Stokes equations by selective frequency damping , 2006 .

[12]  Richard D. Sandberg,et al.  Governing equations for a new compressible Navier-Stokes solver in general cylindrical coordinates , 2007 .

[13]  W. S. Edwards,et al.  Krylov methods for the incompressible Navier-Stokes equations , 1994 .

[14]  Christophe Bailly,et al.  High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems , 2007, J. Comput. Phys..

[15]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[16]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[17]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[18]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[19]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[20]  Sanjiva K. Lele,et al.  Global modes and transient response of a cold supersonic jet , 2011, Journal of Fluid Mechanics.

[21]  Frank Jenko,et al.  Fast eigenvalue calculations in a massively parallel plasma turbulence code , 2010, Parallel Comput..

[22]  Peter J. Schmid,et al.  A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible flows , 2010, J. Comput. Phys..

[23]  Timothy A. Davis,et al.  UMFPACK Version 5.2.0 User Guide , 2003 .

[24]  Peter J. Schmid,et al.  Closed-loop control of an open cavity flow using reduced-order models , 2009, Journal of Fluid Mechanics.