A stroll along the gamma
暂无分享,去创建一个
[1] J. Linnik. An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .
[2] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[3] Normal Approximations with Malliavin Calculus: Preface , 2012 .
[4] Yudell L. Luke,et al. Inequalities for generalized hypergeometric functions , 1972 .
[5] Sourav Chatterjee,et al. A new approach to strong embeddings , 2007, 0711.0501.
[6] Nelson M. Blachman,et al. The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.
[7] P. Graczyk,et al. Higher order Riesz transforms, fractional derivatives, and Sobolev spaces for Laguerre expansions☆ , 2005 .
[8] S. Chatterjee. A NEW METHOD OF NORMAL APPROXIMATION , 2006, math/0611213.
[9] T. Cacoullos,et al. Variational Inequalities with Examples and an Application to the Central Limit Theorem , 1994 .
[10] S. Janson. Gaussian Hilbert Spaces , 1997 .
[11] E. Carlen. Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .
[12] Sourav Chatterjee,et al. Fluctuations of eigenvalues and second order Poincaré inequalities , 2007, 0705.1224.
[13] Ivan Nourdin,et al. Entropy and the fourth moment phenomenon , 2013, ArXiv.
[14] A. Barron,et al. Fisher information inequalities and the central limit theorem , 2001, math/0111020.
[15] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[16] Ivan Nourdin,et al. Stein’s method, logarithmic Sobolev and transport inequalities , 2014, Geometric and Functional Analysis.
[17] E. Carlen,et al. Entropy production by block variable summation and central limit theorems , 1991 .
[18] Cyril Roberto,et al. Bounds on the deficit in the logarithmic Sobolev inequality , 2014, 1408.2115.
[19] A. J. Stam. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..
[20] A. Barron. ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .
[21] G. Peccati,et al. Noncentral convergence of multiple integrals , 2007, 0709.3903.
[22] Friedrich Götze,et al. Fisher information and the central limit theorem , 2012 .
[23] Andrew D. Barbour,et al. Stein's Method , 2014 .
[24] Assaf Naor,et al. Entropy jumps in the presence of a spectral gap , 2003 .
[25] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[26] Assaf Naor,et al. On the rate of convergence in the entropic central limit theorem , 2004 .
[27] Max Fathi,et al. Quantitative logarithmic Sobolev inequalities and stability estimates , 2014, 1410.6922.
[28] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[29] Andrzej Korzeniowski,et al. An example in the theory of hypercontractive semigroups , 1985 .
[30] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[31] Gennadiy P. Chistyakov,et al. Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem , 2011, 1104.3994.
[32] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[33] L. Decreusefond. The Stein-Dirichlet-Malliavin method , 2015, 1505.06075.
[34] Ivan Nourdin,et al. Integration by parts and representation of information functionals , 2013, 2014 IEEE International Symposium on Information Theory.
[35] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[36] G. Peccati,et al. Stein’s method on Wiener chaos , 2007, 0712.2940.
[37] Antonia Maria Tulino,et al. Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof , 2006, IEEE Transactions on Information Theory.
[38] G. Peccati,et al. Normal Approximations with Malliavin Calculus: From Stein's Method to Universality , 2012 .
[39] Frank E. Grubbs,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[40] O. Mazet. Classification des semi-groupes de diffusion sur $\mathbb{R}$ associés à une famille de polynômes orthogonaux , 1997 .
[41] Gennadiy P. Chistyakov,et al. Berry–Esseen bounds in the entropic central limit theorem , 2011, 1105.4119.