A stroll along the gamma

We provide the first in-depth study of the Laguerre interpolation scheme between an arbitrary probability measure and the gamma distribution. We propose new explicit representations for the Laguerre semigroup as well as a new intertwining relation. We use these results to prove a local De Bruijn identity which hold under minimal conditions. We obtain a new proof of the logarithmic Sobolev inequality for the gamma law with α≥1/2 as well as a new type of HSI inequality linking relative entropy, Stein discrepancy and standardized Fisher information for the gamma law with α≥1/2.

[1]  J. Linnik An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .

[2]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[3]  Normal Approximations with Malliavin Calculus: Preface , 2012 .

[4]  Yudell L. Luke,et al.  Inequalities for generalized hypergeometric functions , 1972 .

[5]  Sourav Chatterjee,et al.  A new approach to strong embeddings , 2007, 0711.0501.

[6]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[7]  P. Graczyk,et al.  Higher order Riesz transforms, fractional derivatives, and Sobolev spaces for Laguerre expansions☆ , 2005 .

[8]  S. Chatterjee A NEW METHOD OF NORMAL APPROXIMATION , 2006, math/0611213.

[9]  T. Cacoullos,et al.  Variational Inequalities with Examples and an Application to the Central Limit Theorem , 1994 .

[10]  S. Janson Gaussian Hilbert Spaces , 1997 .

[11]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[12]  Sourav Chatterjee,et al.  Fluctuations of eigenvalues and second order Poincaré inequalities , 2007, 0705.1224.

[13]  Ivan Nourdin,et al.  Entropy and the fourth moment phenomenon , 2013, ArXiv.

[14]  A. Barron,et al.  Fisher information inequalities and the central limit theorem , 2001, math/0111020.

[15]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[16]  Ivan Nourdin,et al.  Stein’s method, logarithmic Sobolev and transport inequalities , 2014, Geometric and Functional Analysis.

[17]  E. Carlen,et al.  Entropy production by block variable summation and central limit theorems , 1991 .

[18]  Cyril Roberto,et al.  Bounds on the deficit in the logarithmic Sobolev inequality , 2014, 1408.2115.

[19]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[20]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[21]  G. Peccati,et al.  Noncentral convergence of multiple integrals , 2007, 0709.3903.

[22]  Friedrich Götze,et al.  Fisher information and the central limit theorem , 2012 .

[23]  Andrew D. Barbour,et al.  Stein's Method , 2014 .

[24]  Assaf Naor,et al.  Entropy jumps in the presence of a spectral gap , 2003 .

[25]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[26]  Assaf Naor,et al.  On the rate of convergence in the entropic central limit theorem , 2004 .

[27]  Max Fathi,et al.  Quantitative logarithmic Sobolev inequalities and stability estimates , 2014, 1410.6922.

[28]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[29]  Andrzej Korzeniowski,et al.  An example in the theory of hypercontractive semigroups , 1985 .

[30]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[31]  Gennadiy P. Chistyakov,et al.  Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem , 2011, 1104.3994.

[32]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[33]  L. Decreusefond The Stein-Dirichlet-Malliavin method , 2015, 1505.06075.

[34]  Ivan Nourdin,et al.  Integration by parts and representation of information functionals , 2013, 2014 IEEE International Symposium on Information Theory.

[35]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[36]  G. Peccati,et al.  Stein’s method on Wiener chaos , 2007, 0712.2940.

[37]  Antonia Maria Tulino,et al.  Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof , 2006, IEEE Transactions on Information Theory.

[38]  G. Peccati,et al.  Normal Approximations with Malliavin Calculus: From Stein's Method to Universality , 2012 .

[39]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[40]  O. Mazet Classification des semi-groupes de diffusion sur $\mathbb{R}$ associés à une famille de polynômes orthogonaux , 1997 .

[41]  Gennadiy P. Chistyakov,et al.  Berry–Esseen bounds in the entropic central limit theorem , 2011, 1105.4119.