Modeling spanwise nonuniformity in the cross-sectional analysis of composite beams

[1]  Dewey H. Hodges,et al.  Theory of Anisotropic Thin-Walled Beams , 2000 .

[2]  Dewey H. Hodges,et al.  Nonlinear Composite Beam Theory , 2006 .

[3]  Robert A. Ormiston,et al.  An Examination of Selected Problems in Rotor Blade Structural Mechanics and Dynamics , 2003 .

[4]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[5]  C.W.S. To,et al.  A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis , 1981 .

[6]  Dinar Camotim,et al.  Lateral–Torsional Buckling of Singly Symmetric Tapered Beams: Theory and Applications , 2005 .

[7]  Dewey H. Hodges,et al.  Asymptotic generalization of Reissner–Mindlin theory: accurate three-dimensional recovery for composite shells , 2002 .

[8]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[9]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[10]  Carlos E. S. Cesnik,et al.  On Timoshenko-like modeling of initially curved and twisted composite beams , 2002 .

[11]  Dewey H. Hodges,et al.  Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams , 2004 .

[12]  Harley Flanders,et al.  Differentiation Under the Integral Sign , 1973 .

[13]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[14]  C. Cesnik,et al.  Cross-sectional analysis of initially twisted and curved composite beams , 1994 .

[15]  Víctor H. Cortínez,et al.  Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams , 2008 .

[16]  Inderjit Chopra,et al.  Refined Structural Model for Thin- and Thick-Walled Composite Rotor Blades , 2002 .

[17]  Carlos E. S. Cesnik,et al.  On a simplified strain energy function for geometrically nonlinear behaviour of anisotropic beams , 1991 .

[18]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[19]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[20]  Arturo Tena-Colunga,et al.  Stiffness Formulation for Nonprismatic Beam Elements , 1996 .

[21]  Peter Teunissen,et al.  Nonlinear least squares , 1990 .

[22]  Dimitris L. Karabalis,et al.  Static, dynamic and stability analysis of structures composed of tapered beams , 1983 .

[23]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[24]  Rafael Palacios Nieto,et al.  Asymptotic models of integrally-strained slender structures for high-fidelity nonlinear aeroelastic analysis , 2005 .

[25]  William L. Cleghorn,et al.  Finite element formulation of a tapered Timoshenko beam for free lateral vibration analysis , 1992 .

[26]  M. Borri,et al.  Anisotropic beam theory and applications , 1983 .

[27]  R. Hibbeler Statics and Mechanics of Materials , 1995 .

[28]  Dewey H. Hodges,et al.  On asymptotically correct Timoshenko-like anisotropic beam theory , 2000 .

[29]  Mjd Powell,et al.  A Fortran subroutine for solving systems of non-linear algebraic equations , 1968 .

[30]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[31]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .

[32]  K. Judd Numerical methods in economics , 1998 .

[33]  V. Berdichevskiĭ Variational-asymptotic method of constructing a theory of shells , 1979 .

[34]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[35]  Loc Vu-Quoc,et al.  Efficient evaluation of the flexibility of tapered I-beams accounting for shear deformations , 1992 .

[36]  Dewey H. Hodges,et al.  Asymptotic treatment of the trapeze effect in finite element cross-sectional analysis of composite beams , 1999 .

[37]  I. Chopra,et al.  Thin-walled composite beams under bending, torsional, and extensional loads , 1990 .

[38]  T. J. Lardner,et al.  MECHANICS OF SOLIDS WITH APPLICATIONS TO THIN BODIES - WEMPNER,G , 1982 .

[39]  John D. Renton,et al.  Generalized beam theory applied to shear stiffness , 1991 .

[40]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[41]  Dewey H. Hodges,et al.  Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor , 1987 .

[42]  Dewey H. Hodges,et al.  Flight Dynamics of Highly Flexible Flying Wings , 2006 .

[43]  J. R. Banerjee,et al.  Exact Bernoulli‐Euler static stiffness matrix for a range of tapered beam‐columns , 1986 .

[44]  Dewey H. Hodges,et al.  Asymptotically accurate 3-D recovery from Reissner-like composite plate finite elements , 2003 .

[45]  R. Schnabel,et al.  10. Nonlinear Least Squares , 1996 .

[46]  Dewey H. Hodges,et al.  Elasticity Solutions Versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams , 2004 .

[47]  Wenbin Yu,et al.  Variational asymptotic modeling of composite dimensionally reducible structures , 2002 .

[48]  Nicholas S. Trahair,et al.  Elastic Behavior of Tapered Monosymmetric I-Beams , 1975 .

[49]  Sundaramoorthy Rajasekaran,et al.  Equations for Tapered Thin‐Walled Beams of Generic Open Section , 1994 .

[50]  William H. Press,et al.  In: Numerical Recipes in Fortran 90 , 1996 .

[51]  M. de Saint-Venant,et al.  Mémoire sur la torsion des prismes : avec des considérations sur leur flexion ainsi que sur l'équilibre intérieur des solides élastiques en général, et des formules pratiques ... , 1856 .

[52]  Ozge Ozdemir Ozgumus,et al.  Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending–torsion coupling , 2007 .

[53]  Bruno A. Boley,et al.  On the Accuracy of the Bernoulli-Euler Theory for Beams of Variable Section , 1963 .

[54]  V. Vlasov Thin-walled elastic beams , 1961 .

[55]  Carlos E. S. Cesnik,et al.  VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling , 1995 .

[56]  J. L. Krahula Shear formula for beams of variable cross section , 1975 .