Modeling spanwise nonuniformity in the cross-sectional analysis of composite beams
暂无分享,去创建一个
[1] Dewey H. Hodges,et al. Theory of Anisotropic Thin-Walled Beams , 2000 .
[2] Dewey H. Hodges,et al. Nonlinear Composite Beam Theory , 2006 .
[3] Robert A. Ormiston,et al. An Examination of Selected Problems in Rotor Blade Structural Mechanics and Dynamics , 2003 .
[4] K. Washizu. Variational Methods in Elasticity and Plasticity , 1982 .
[5] C.W.S. To,et al. A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis , 1981 .
[6] Dinar Camotim,et al. Lateral–Torsional Buckling of Singly Symmetric Tapered Beams: Theory and Applications , 2005 .
[7] Dewey H. Hodges,et al. Asymptotic generalization of Reissner–Mindlin theory: accurate three-dimensional recovery for composite shells , 2002 .
[8] S. Timoshenko,et al. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .
[9] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[10] Carlos E. S. Cesnik,et al. On Timoshenko-like modeling of initially curved and twisted composite beams , 2002 .
[11] Dewey H. Hodges,et al. Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams , 2004 .
[12] Harley Flanders,et al. Differentiation Under the Integral Sign , 1973 .
[13] Jorge J. Moré,et al. User Guide for Minpack-1 , 1980 .
[14] C. Cesnik,et al. Cross-sectional analysis of initially twisted and curved composite beams , 1994 .
[15] Víctor H. Cortínez,et al. Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams , 2008 .
[16] Inderjit Chopra,et al. Refined Structural Model for Thin- and Thick-Walled Composite Rotor Blades , 2002 .
[17] Carlos E. S. Cesnik,et al. On a simplified strain energy function for geometrically nonlinear behaviour of anisotropic beams , 1991 .
[18] E. Cosserat,et al. Théorie des Corps déformables , 1909, Nature.
[19] Thomas F. Coleman,et al. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..
[20] Arturo Tena-Colunga,et al. Stiffness Formulation for Nonprismatic Beam Elements , 1996 .
[21] Peter Teunissen,et al. Nonlinear least squares , 1990 .
[22] Dimitris L. Karabalis,et al. Static, dynamic and stability analysis of structures composed of tapered beams , 1983 .
[23] S. Timoshenko,et al. Theory of elasticity , 1975 .
[24] Rafael Palacios Nieto,et al. Asymptotic models of integrally-strained slender structures for high-fidelity nonlinear aeroelastic analysis , 2005 .
[25] William L. Cleghorn,et al. Finite element formulation of a tapered Timoshenko beam for free lateral vibration analysis , 1992 .
[26] M. Borri,et al. Anisotropic beam theory and applications , 1983 .
[27] R. Hibbeler. Statics and Mechanics of Materials , 1995 .
[28] Dewey H. Hodges,et al. On asymptotically correct Timoshenko-like anisotropic beam theory , 2000 .
[29] Mjd Powell,et al. A Fortran subroutine for solving systems of non-linear algebraic equations , 1968 .
[30] T. Coleman,et al. On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .
[31] S. Timoshenko,et al. X. On the transverse vibrations of bars of uniform cross-section , 1922 .
[32] K. Judd. Numerical methods in economics , 1998 .
[33] V. Berdichevskiĭ. Variational-asymptotic method of constructing a theory of shells , 1979 .
[34] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[35] Loc Vu-Quoc,et al. Efficient evaluation of the flexibility of tapered I-beams accounting for shear deformations , 1992 .
[36] Dewey H. Hodges,et al. Asymptotic treatment of the trapeze effect in finite element cross-sectional analysis of composite beams , 1999 .
[37] I. Chopra,et al. Thin-walled composite beams under bending, torsional, and extensional loads , 1990 .
[38] T. J. Lardner,et al. MECHANICS OF SOLIDS WITH APPLICATIONS TO THIN BODIES - WEMPNER,G , 1982 .
[39] John D. Renton,et al. Generalized beam theory applied to shear stiffness , 1991 .
[40] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[41] Dewey H. Hodges,et al. Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor , 1987 .
[42] Dewey H. Hodges,et al. Flight Dynamics of Highly Flexible Flying Wings , 2006 .
[43] J. R. Banerjee,et al. Exact Bernoulli‐Euler static stiffness matrix for a range of tapered beam‐columns , 1986 .
[44] Dewey H. Hodges,et al. Asymptotically accurate 3-D recovery from Reissner-like composite plate finite elements , 2003 .
[45] R. Schnabel,et al. 10. Nonlinear Least Squares , 1996 .
[46] Dewey H. Hodges,et al. Elasticity Solutions Versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams , 2004 .
[47] Wenbin Yu,et al. Variational asymptotic modeling of composite dimensionally reducible structures , 2002 .
[48] Nicholas S. Trahair,et al. Elastic Behavior of Tapered Monosymmetric I-Beams , 1975 .
[49] Sundaramoorthy Rajasekaran,et al. Equations for Tapered Thin‐Walled Beams of Generic Open Section , 1994 .
[50] William H. Press,et al. In: Numerical Recipes in Fortran 90 , 1996 .
[51] M. de Saint-Venant,et al. Mémoire sur la torsion des prismes : avec des considérations sur leur flexion ainsi que sur l'équilibre intérieur des solides élastiques en général, et des formules pratiques ... , 1856 .
[52] Ozge Ozdemir Ozgumus,et al. Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending–torsion coupling , 2007 .
[53] Bruno A. Boley,et al. On the Accuracy of the Bernoulli-Euler Theory for Beams of Variable Section , 1963 .
[54] V. Vlasov. Thin-walled elastic beams , 1961 .
[55] Carlos E. S. Cesnik,et al. VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling , 1995 .
[56] J. L. Krahula. Shear formula for beams of variable cross section , 1975 .