Non‐seasonal clade‐specificity and subclade microvariation in symbiotic dinoflagellates (Symbiodinium spp.) in Zoanthus sansibaricus (Anthozoa: Hexacorallia) at Kagoshima Bay, Japan

While much work has investigated the genetic diversity of symbiotic dinoflagellate genus Symbiodinium Freudenthal in cnidarians, investigations into such diversity over temporal scales (seasonal and/or annual) remain scarce. Here, we have sequenced the internal transcribed spacer of ribosomal DNA (ITS‐rDNA) of Symbiodinium from samples of designated Zoanthus sansibaricus Carlgren (Anthozoa: Hexacorallia) colonies collected for 12 months (August 2004–July 2005) at a high latitude non‐reefal coral community at Sakurajima, Kagoshima Bay, Japan (31°35′N, 130°35′E). Our results show that despite large ocean temperature changes (15.0–29.0°C) throughout the one‐year experimental period, Z. sansibaricus colonies contained only clade C Symbiodinium from many different subclade C1/C3‐related novel types not previously reported. While no temporal changes in clade‐level associations were seen, there were consistent and extremely large amounts (145 unique sequences out of 153 total obtained sequences) of genotypic microvariation observed in our obtained sequences. Despite Z. sansibaricus acquiring Symbiodinium horizontally and the presence of various other Symbiodinium clades (A, G) and subclades (e.g. C15 and derived subclades) in the immediate environment, Z. sansibaricus at Sakurajima specifically associates with subclade C1/C3‐related Symbiodinium. While subclades C1/C3 have been found in a variety of different environments and are believed to be ancestral, ‘generalist’ types of Symbiodinium, C1/C3‐related clades such as seen here may be more adapted to specialized niches. We theorize that specific and year‐round association with many different types of subclade C1/C3‐related Symbiodinium helps Z. sansibaricus to survive in the fluctuating Sakurajima environment.

[1]  R. Buddemeier,et al.  CORAL BLEACHING AS AN ADAPTIVE MECHANISM : A TESTABLE HYPOTHESIS , 1993 .

[2]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[3]  J. Pawlowski,et al.  High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans , 2001 .

[4]  K. Lam,et al.  A stable association of the stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia: Faviidae) in subtropical non-reefal coral communities , 2003 .

[5]  Agaricia tenuifolia,et al.  Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs , 2002 .

[6]  J. Reimer,et al.  Reconsidering Zoanthus spp. Diversity: Molecular Evidence of Conspecifity Within Four Previously Presumed Species , 2004, Zoological science.

[7]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[8]  S. R. Santos,et al.  GENETIC COMPARISONS OF FRESHLY ISOLATED VERSUS CULTURED SYMBIOTIC DINOFLAGELLATES: IMPLICATIONS FOR EXTRAPOLATING TO THE INTACT SYMBIOSIS , 2001 .

[9]  Chaolun Allen Chen,et al.  Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan , 2005 .

[10]  O. Hoegh‐Guldberg,et al.  Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients , 2004 .

[11]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[12]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[13]  L. Muscatine,et al.  Reef Corals: Mutualistic Symbioses Adapted to Nutrient-Poor Environments , 1977 .

[14]  Tadashi Maruyama,et al.  Latitudinal and intracolony ITS‐rDNA sequence variation in the symbiotic dinoflagellate genus Symbiodinium (Dinophyceae) in Zoanthus sansibaricus (Anthozoa: Hexacorallia) , 2006 .

[15]  J. Ward,et al.  Stable Symbiodinium Composition in the Sea Fan Gorgonia ventalina During Temperature and Disease Stress , 2005, The Biological Bulletin.

[16]  X. Pochon,et al.  Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. , 2006, Molecular phylogenetics and evolution.

[17]  D. Powers,et al.  Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[19]  T. Maruyama,et al.  CONSPECIFICITY AND INDO‐PACIFIC DISTRIBUTION OF SYMBIODINIUM GENOTYPES (DINOPHYCEAE) FROM GIANT CLAMS , 2000 .

[20]  T. Lajeunesse "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. , 2005, Molecular biology and evolution.

[21]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[22]  S. R. Santos,et al.  Molecular Characterization of Nuclear Small Subunit (18S)-rDNA Pseudogenes in a Symbiotic Dinoflagellate (Symbiodinium, Dinophyta) , 2003, The Journal of eukaryotic microbiology.

[23]  N. Knowlton,et al.  Landscape ecology of algal symbionts creates variation in episodes of coral bleaching , 1997, Nature.

[24]  O. Hoegh‐Guldberg,et al.  Symbiont diversity within the widespread scleractinian coral Plesiastrea versipora, across the northwestern Pacific , 2003 .

[25]  Tadashi Maruyama,et al.  Morphological and Molecular Revision of Zoanthus (Anthozoa: Hexacorallia) from Southwestern Japan, with Descriptions of Two New Species , 2006, Zoological science.

[26]  X. Pochon,et al.  Molecular Identification of Algal Endosymbionts in Large Miliolid Foraminifera: 2. Dinoflagellates , 2001, The Journal of eukaryotic microbiology.

[27]  O. Hoegh‐Guldberg,et al.  Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean , 2003 .

[28]  N. Knowlton,et al.  Repopulation of Zooxanthellae in the Caribbean Corals Montastraea annularis and M. faveolata following Experimental and Disease-Associated Bleaching , 2001, The Biological Bulletin.

[29]  内田 紘臣,et al.  イソギンチャクガイドブック = Sea anemones in Japanese waters , 2001 .

[30]  G. Schmidt,et al.  High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii , 2004, Coral Reefs.

[31]  J. Reimer,et al.  Reproduction of Zoanthus sansibaricus in the Infra-Littoral Zone at Taisho Lava Field, Sakurajima, Kagoshima, Japan , 2005, Zoological science.

[32]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[33]  X. Pochon,et al.  Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta) , 2004 .

[34]  D. Powers,et al.  A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses , 1991, Science.

[35]  Tadashi Maruyama,et al.  Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan , 2006, Coral Reefs.

[36]  M. Kawachi,et al.  PHYLOGENETIC POSITION OF SYMBIODINIUM (DINOPHYCEAE) ISOLATES FROM TRIDACNIDS (BIVALVIA), CARDIIDS (BIVALVIA), A SPONGE (PORIFERA), A SOFT CORAL (ANTHOZOA), AND A FREE‐LIVING STRAIN , 1999 .