Hydrogen storage properties of Pd nanoparticle/carbon template composites

Abstract Theoretical studies predict improved hydrogenation properties for hybrid carbon/metal composites. The hydrogen storage capacity of ordered porous carbon containing Pd clusters was measured. The C/Pd composite was obtained by chemical impregnation of an ordered porous carbon template (CT) with a H 2 PdCl 4 solution followed by a reduction treatment. 10 wt.% of palladium clusters were introduced in the carbon porosity; the Pd clusters (2 nm in size) being homogeneously distributed. Thermodynamic hydrogenation properties of both Pd-free CT and the Pd–10 wt.% CT composite have been determined by hydrogen isotherm sorption measurements and thermal desorption spectroscopy (TDS) analysis. The introduction of the palladium into the carbon matrix does not increase the hydrogen storage capacity at 77 K and 1.6 MPa, since here the hydrogen uptake is being attributed to physisorption on the carbon. However, at room temperature and moderate pressure (0.5 MPa), the filling of the CT with 10 wt.% nanocrystalline Pd results in an hydrogen uptake eight times larger than that of the Pd-free CT. After the second cycle, a good reversibility is observed. TDS measurements confirm that the sharp increase of the hydrogen uptake is due to the presence of the Pd clusters in the carbon porosity.

[1]  F. Schüth Endo- and exotemplating to create high-surface-area inorganic materials. , 2003, Angewandte Chemie.

[2]  J. Patarin,et al.  Template synthesis of a new type of ordered carbon structure from pitch , 2003 .

[3]  R. T. Yang,et al.  Hydrogen Spillover to Enhance Hydrogen Storage -- Study of the Effect of Carbon Physicochemical Properties , 2004 .

[4]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[5]  E. David An overview of advanced materials for hydrogen storage , 2005 .

[6]  M. Izquierdo,et al.  Hydrogen adsorption studies on single wall carbon nanotubes , 2004 .

[7]  Y. Matsumura,et al.  Hydrogen absorption of nanocrystalline palladium , 2002 .

[8]  Ana M. Benito,et al.  Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption , 2007 .

[9]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[10]  R. Kirchheim,et al.  Segregation and diffusion of hydrogen in grain boundaries of palladium , 1987 .

[11]  Andreas Züttel,et al.  Hydrogen sorption by carbon nanotubes and other carbon nanostructures , 2002 .

[12]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[13]  Reiner Kirchheim,et al.  HYDROGEN IN METALS: Microstructural Aspects , 2006 .

[14]  J. H. van Lenthe,et al.  Hydrogen storage in magnesium clusters: quantum chemical study. , 2005, Journal of the American Chemical Society.

[15]  M. Sanjuán,et al.  Porosity, Surface Area, Surface Energy, and Hydrogen Adsorption in Nanostructured Carbons , 2004 .

[16]  R. Birringer,et al.  Hydrogen in amorphous and nanocrystalline metals , 1988 .

[17]  L. Roué,et al.  Nanostructured Palladium Thin Films Prepared by Pulsed Laser Deposition Structural Characterizations and Hydrogen Electrosorption Properties , 2005 .

[18]  B. Younglove,et al.  Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen , 1985 .

[19]  Puja Jain,et al.  Hydrogen Uptake of Platinum-Doped Graphite Nanofibers and Stochastic Analysis of Hydrogen Spillover , 2007 .

[20]  Yang Li,et al.  Hydrogen diffusion and solubility in palladium thin films , 1996 .

[21]  M. Fichtner,et al.  Nanocrystalline aluminium hydrides for hydrogen storage , 2004 .

[22]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[23]  Ferdi Schüth,et al.  Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials , 2009 .

[24]  A. Züttel,et al.  Critical size and surface effect of the hydrogen interaction of palladium clusters , 2000 .

[25]  J. Patarin,et al.  The Influence of Microporosity on the Hydrogen Storage Capacity of Ordered Mesoporous Carbons , 2005 .

[26]  Ray,et al.  Pressure-composition isotherms for palladium hydride. , 1993, Physical review. B, Condensed matter.

[27]  Michael Hirscher,et al.  Hydrogen Physisorption in Metal–Organic Porous Crystals , 2005 .

[28]  J. Werckmann,et al.  Formation of Ordered Mesoporous Carbon Material from a Silica Template by a One-Step Chemical Vapour Infiltration Process , 2002 .

[29]  S. Ciraci,et al.  Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C 60 , 2005, cond-mat/0505046.

[30]  A. Pundt,et al.  Hydrogen absorption behaviour in nanometer sized palladium samples stabilised in soft and hard matrix , 2005 .

[31]  H. Hatori,et al.  Hydrogen adsorption properties of activated carbons with modified surfaces , 2004 .

[32]  M. Winter,et al.  Hydrogen sorption in elastically soft stabilized Pd-clusters , 1999 .

[33]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[34]  Miroslav Haluska,et al.  Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids , 2003 .

[35]  Sang Hoon Joo,et al.  Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation , 1999 .

[36]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[37]  S. Saadallah,et al.  The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons , 2005 .

[38]  M. Latroche Structural and thermodynamic properties of metallic hydrides used for energy storage , 2004 .

[39]  J. Werckmann,et al.  Small-Angle X-ray Scattering and Electron Microscopy Investigation of Silica and Carbon Replicas with Ordered Porosity , 2003 .

[40]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[41]  T. Hyeon,et al.  Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates , 2004 .

[42]  E. Wicke,et al.  Magnetic susceptibility and equilibrium diagram of PdHn , 1972, Berichte der Bunsengesellschaft für physikalische Chemie.

[43]  Thompson,et al.  Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium. , 1993, Physical review. B, Condensed matter.

[44]  Alfred Driessen,et al.  Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000K , 1986 .

[45]  A. Stern,et al.  Thermal desorption spectra of the PdHx system in a powder form , 1984 .

[46]  Michael Hirscher,et al.  Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials , 2007 .

[47]  T Yildirim,et al.  Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. , 2005, Physical review letters.