Cluster secondary ion mass spectrometry of polymers and related materials.

Cluster secondary ion mass spectrometry (cluster SIMS) has played a critical role in the characterization of polymeric materials over the last decade, allowing for the ability to obtain spatially resolved surface and in-depth molecular information from many polymer systems. With the advent of new molecular sources such as C(60)(+), Au(3)(+), SF(5)(+), and Bi(3)(+), there are considerable increases in secondary ion signal as compared to more conventional atomic beams (Ar(+), Cs(+), or Ga(+)). In addition, compositional depth profiling in organic and polymeric systems is now feasible, without the rapid signal decay that is typically observed under atomic bombardment. The premise behind the success of cluster SIMS is that compared to atomic beams, polyatomic beams tend to cause surface-localized damage with rapid sputter removal rates, resulting in a system at equilibrium, where the damage created is rapidly removed before it can accumulate. Though this may be partly true, there are actually much more complex chemistries occurring under polyatomic bombardment of organic and polymeric materials, which need to be considered and discussed to better understand and define the important parameters for successful depth profiling. The following presents a review of the current literature on polymer analysis using cluster beams. This review will focus on the surface and in-depth characterization of polymer samples with cluster sources, but will also discuss the characterization of other relevant organic materials, and basic polymer radiation chemistry.

[1]  Modeling keV particle interactions with molecular and polymeric samples , 2005 .

[2]  D. Touboul,et al.  Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. , 2005, Journal of mass spectrometry : JMS.

[3]  D. Briggs,et al.  Analysis of polymer surfaces by SIMS 17 , 1992 .

[4]  A. Chilkoti,et al.  Analysis of polymer surfaces by SIMS. 16. Investigation of surface crosslinking in polymer gels of 2-hydroxyethyl methacrylate , 1993 .

[5]  I. Urazgil’din Secondary ion emission from metal surfaces , 1993 .

[6]  T. Kwei,et al.  Surface Enrichment in Polymer Blends Involving Hydrogen Bonding , 2001 .

[7]  F. Green,et al.  Measurement of sputtering yields and damage in C60 SIMS depth profiling of model organic materials , 2007 .

[8]  A. Benninghoven,et al.  Secondary ion emission from arachidic acid LB-layers under Ar+, Xe+, Ga+ and SF5+ primary ion bombardment , 1999 .

[9]  Eal H. Lee,et al.  Improved wear properties of high energy ion-implanted polycarbonate , 1995 .

[10]  H. H. Andersen,et al.  Nonlinear effects in heavy-ion sputtering , 1974 .

[11]  Emile A. Schweikert,et al.  A Comparison of Desorption Yields from C+60 to Atomic and Polyatomic Projectiles at keV Energies , 1996 .

[12]  J. Delmore,et al.  A rare earth oxide matrix for emitting perrhenate anions , 1995 .

[13]  P. Van Royen,et al.  Use of monoatomic and polyatomic projectiles for the characterisation of polylactic acid by static secondary ion mass spectrometry. , 2005, Rapid communications in mass spectrometry : RCM.

[14]  A. Brunelle,et al.  Attempts for molecular depth profiling directly on a rat brain tissue section using fullerene and bismuth cluster ion beams , 2007 .

[15]  H. Bernas,et al.  GIANT METAL SPUTTERING YIELDS INDUCED BY 20-5000 KEV/ATOM GOLD CLUSTERS , 1998 .

[16]  J. Gardella,et al.  SIMS depth profiling of polymer blends with protein based drugs , 2006 .

[17]  L. Torrisi,et al.  ION BEAM ASSISTED UNZIPPING OF PMMA , 1998 .

[18]  N. Lockyer,et al.  Suppression and enhancement of non-native molecules within biological systems , 2006 .

[19]  J. M. McMahon,et al.  Organic ion imaging beyond the limit of static secondary ion mass spectrometry , 1995, Journal of the American Society for Mass Spectrometry.

[20]  A. Chorvatova,et al.  Analysis of cardiac tissue by gold cluster ion bombardment , 2006 .

[21]  Y. Mitani,et al.  O3+ cluster primary ion bombardment for secondary ion mass spectrometry , 1997 .

[22]  G. Nagy,et al.  Enhanced secondary ion emission with a bismuth cluster ion source , 2007 .

[23]  B. Garrison,et al.  Computational view of surface based organic mass spectrometry. , 2008, Mass spectrometry reviews.

[24]  Eal H. Lee,et al.  Improved surface properties of polymer materials by multiple ion beam treatment , 1991 .

[25]  J. Landes Application of a J-Q Model for Fracture in the Ductile-Brittle Transition , 1997 .

[26]  A. Benninghoven,et al.  Secondary ion emission from polymer surfaces under Ar+, Xe+ and SF5+ ion bombardment , 1998 .

[27]  L. Hanley,et al.  Surface Analysis Studies of Yield Enhancements in Secondary Ion Mass Spectrometry by Polyatomic Projectiles , 2001 .

[28]  R. Gijbels,et al.  Metal-assisted secondary ion mass spectrometry: influence of Ag and Au deposition on molecular ion yields. , 2004, Analytical chemistry.

[29]  Yu. Pogoreltsev,et al.  The Application , 2020, How to Succeed in the Academic Clinical Interview.

[30]  C. Balik,et al.  High‐energy ion implantation of polymers: Poly(ethylene terephthalate) , 1987 .

[31]  S. Schwarz,et al.  Silicon Oxide Surface as a Substrate of Polymer Thin Films , 2001 .

[32]  A. Chilkoti,et al.  Analysis of polymer surfaces by SIMS: Part 15. Oxygen‐functionalized aliphatic homopolymers , 1992 .

[33]  Hunt,et al.  Nonlinear effects in desorption of valine with fast incident molecular ions. , 1988, Physical review. B, Condensed matter.

[34]  S. Ninomiya,et al.  High-intensity Si cluster ion emission from a silicon target bombarded with large Ar cluster ions , 2006 .

[35]  E. Schweikert,et al.  Matrix-enhanced cluster-SIMS , 2006 .

[36]  M. Wagner,et al.  3D molecular imaging SIMS , 2006 .

[37]  Juan Cheng,et al.  Molecular depth profiling with cluster ion beams. , 2006, The journal of physical chemistry. B.

[38]  Y. Koval’,et al.  Mechanism of etching and surface relief development of PMMA under low-energy ion bombardment , 2004 .

[39]  A. Appelhans,et al.  Analysis of VX on soil particles using ion trap secondary ion mass spectrometry. , 1999, Analytical chemistry.

[40]  A. Wucher A simple erosion dynamics model of molecular sputter depth profiling , 2008 .

[41]  Juan Cheng,et al.  Molecular Depth Profiling using a C(60) Cluster Beam: the Role of Impact Energy. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[42]  G. Gillen,et al.  Molecular ion imaging and dynamic secondary ion mass spectrometry of organic compounds. , 1990, Analytical chemistry.

[43]  N. Mine,et al.  Molecular depth profiling of polymers with very low energy ions , 2008 .

[44]  V. Pinnick,et al.  Organic SIMS with single massive gold projectile : Ion yield enhancement by silver metallization , 2006 .

[45]  G. Leggett,et al.  Effects of damage during the SIMS analysis of poly(vinyl chloride) and poly(methyl methacrylate) , 1992 .

[46]  M. Tarlov,et al.  Characterization and ion-induced degradation of cross-linked poly(methyl methacrylate) studied using time of flight secondary ion mass spectrometry , 2006 .

[47]  G. Bolbach,et al.  Secondary ion emission under cluster impact at low energies (5–60 keV); influence of the number of atoms in the projectile , 1994 .

[48]  L. Calcagno,et al.  Ion‐chain interaction in keV ion‐beam‐irradiated polystyrene , 1987 .

[49]  C. Diehnelt,et al.  Effectiveness of atomic and polyatomic primary ions for organic secondary ion mass spectrometry , 2001 .

[50]  M. Wagner Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry. , 2005, Analytical chemistry.

[51]  J. Lausmaa,et al.  Mass spectrometric imaging of lipids in brain tissue. , 2004, Analytical chemistry.

[52]  P. Bertrand,et al.  Metal-assisted secondary ion mass spectrometry using atomic (Ga+, In+) and fullerene projectiles. , 2007, Analytical chemistry.

[53]  R. Chǔjǒ SIMS Depth Profiling of Polymer Surfaces , 1991 .

[54]  SIMS depth profiling of deuterium labeled polymers in polymer multilayers , 2006 .

[55]  David Touboul,et al.  Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source , 2005, Journal of the American Society for Mass Spectrometry.

[56]  J. Delmore,et al.  Secondary ion mass spectrometry of sodium nitrate: comparison of ReO4− and Cs+ primary ions , 1997 .

[57]  M. Wagner Degradation of poly(acrylates) under SF5+ primary ion bombardment studied using time‐of‐flight secondary ion mass spectrometry. 1. Effect of main chain and pendant methyl groups , 2005 .

[58]  A. Yang,et al.  Chain Diffusion and Microstructure at a Glassy−Rubbery Polymer Interface by SIMS , 2002 .

[59]  R. Dickman,et al.  Concentration Profiles of End-Grafted, Diblock and Triblock Polymers in the Melt: Near-Wall Structure and Effects of Segment-Wall Interaction , 1995 .

[60]  H. H. Andersen,et al.  Heavy‐ion sputtering yields of gold: Further evidence of nonlinear effects , 1975 .

[61]  A. Soldera Energetic analysis of the two PMMA chain tacticities and PMA through molecular dynamics simulations , 2002 .

[62]  D. Weibel,et al.  Development and experimental application of a gold liquid metal ion source , 2003 .

[63]  Eal H. Lee,et al.  Microstructural effects on surface mechanical properties of ion implanted polymers , 1993 .

[64]  N. Winograd,et al.  Model multilayer structures for three-dimensional cell imaging , 2006 .

[65]  W. Reuter Secondary ion emission from metal targets under carbon trifluoride ion (CF3+) and oxygen ion (O2+) bombardment , 1987 .

[66]  M. Kaibara,et al.  Endothelial cell adhesion to ion implanted polymers , 1992 .

[67]  B. Sundqvist,et al.  Acceleration of Cn+60 molecules to high energy , 1993 .

[68]  R. Lareau,et al.  Characterization of high explosive particles using cluster secondary ion mass spectrometry. , 2006, Rapid communications in mass spectrometry : RCM.

[69]  P. Bertrand,et al.  Influence of the primary ion beam parameters (nature, energy, and angle) on the kinetic energy distribution of molecular fragments sputtered from poly(ethylene terephthalate) by kiloelectron volt ions , 1999 .

[70]  B. Wilkens,et al.  Determination of the concentration profile at the surface of deuterated polystyrene/hydrogenated polystyrene blends using high-resolution ion scattering techniques , 1991 .

[71]  M. Kelley,et al.  ToF–SIMS analysis of a fluorocarbon-grafted PET with a gold cluster ion source , 2006 .

[72]  Sokolov,et al.  Reptation dynamics of a polymer melt near an attractive solid interface. , 1995, Physical review letters.

[73]  N. Winograd,et al.  Molecular depth profiling of histamine in ice using a buckminsterfullerene probe. , 2004, Analytical chemistry.

[74]  A. Appelhans,et al.  Static secondary ionization mass spectrometry and mass spectrometry/mass spectrometry (MS2) characterization of the chemical warfare agent HD on soil particle surfaces , 2001 .

[75]  D. Thompson,et al.  Nonlinear sputtering effects in thin metal films , 1979 .

[76]  P. Sigmund,et al.  Sputtering from elastic‐collision spikes in heavy‐ion‐bombarded metals , 1981 .

[77]  A. Taranu,et al.  Comparison of primary monoatomic with primary polyatomic ions for the characterisation of polyesters with static secondary ion mass spectrometry. , 2005, Rapid communications in mass spectrometry : RCM.

[78]  A. Benninghoven,et al.  Time-of-flight secondary ion mass spectrometric analysis of polymer surfaces and additives , 1993 .

[79]  G. Scilla,et al.  Application of a trifluorocarbon ion (CF3+) primary ion source for depth profiling in secondary-ion mass spectrometry , 1988 .

[80]  R. Cooks,et al.  Secondary ion mass spectrometry. Cationization of organic molecules with metals , 1978 .

[81]  M. Kappes,et al.  A comparison between fullerene and single atom impacts on graphite , 1997 .

[82]  I. Yamada,et al.  Polycarbonate surface modified by argon cluster ion beams , 1999 .

[83]  Yoshiaki Suzuki,et al.  Analysis of cell-adhesion surface induced by ion-beam irradiation into biodegradable polymer , 2006 .

[84]  S. Della-Negra,et al.  Impact of slow gold clusters on various solids: nonlinear effects in secondary ion emission , 1991 .

[85]  G. Gillen,et al.  Depth profiling of 4-acetamindophenol-doped poly(lactic acid) films using cluster secondary ion mass spectrometry. , 2004, Analytical chemistry.

[86]  L. Hanley,et al.  Sputtering yields of PMMA films bombarded by keV C60+ ions , 2006 .

[87]  G. Boiteux,et al.  Hydrogenated carbon layers produced by ion beam irradiation of PMMA and polystyrene films , 1990 .

[88]  S. Vaidyanathan,et al.  TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. , 2007, Analytical chemistry.

[89]  J. Watts,et al.  ToF‐SIMS depth profiling of a complex polymeric coating employing a C60 sputter source , 2007 .

[90]  J. Gardella,et al.  Depth profiling of poly(L-lactic acid)/triblock copolymer blends with time-of-flight secondary ion mass spectrometry. , 2005, Analytical chemistry.

[91]  Y. Ikada,et al.  Surface characterization of ion‐implanted polyethylene , 1998 .

[92]  B. Garrison,et al.  High Yield Events of Molecular Emission Induced by Kiloelectronvolt Particle Bombardment , 2000 .

[93]  H. Ryssel,et al.  Improvement of surface properties of polymers by ion implantation , 1993 .

[94]  Blain,et al.  Secondary-ion yields from surfaces bombarded with keV molecular and cluster ions. , 1989, Physical review letters.

[95]  D. Cornett,et al.  Matrix-free desorption of biomolecules using massive cluster impact. , 1994, Rapid communications in mass spectrometry : RCM.

[96]  A. Benninghoven,et al.  Secondary ion emission from polymethacrylate LB-layers under 0.5–11 keV atomic and molecular primary ion bombardment , 2000 .

[97]  Greg Gillen,et al.  Temperature-controlled depth profiling of poly(methyl methacrylate) using cluster secondary ion mass spectrometry. 1. Investigation of depth profile characteristics , 2007 .

[98]  F. Halgand,et al.  Tissue molecular ion imaging by gold cluster ion bombardment. , 2004, Analytical chemistry.

[99]  D. Briggs,et al.  Interaction of ion beams with polymers, with particular reference to SIMS , 1986 .

[100]  T. Hoshi,et al.  Evaluation of a gold LMIG for detecting small molecules in a polymer matrix by ToF-SIMS , 2004 .

[101]  T. Venkatesan,et al.  Large conductivity changes in ion beam irradiated organic thin films , 1982 .

[102]  V. Svorcik,et al.  AFM surface morphology investigation of ion beam modified polyimide , 1997 .

[103]  J. Simmerer,et al.  Characterization of polymeric light emitting diodes by SIMS depth profiling analysis , 1995 .

[104]  G. Gillen,et al.  Depth profiling using C60+ SIMS—Deposition and topography development during bombardment of silicon , 2006 .

[105]  H. Itoh,et al.  Secondary Ion Mass Spectrometry of Organic Thin Films Using Metal-Cluster-Complex Ion Source , 2006 .

[106]  R. King,et al.  Development of a triplasmatron ion source for the generation of SF5+ and F− primary ion beams on an ion microscope secondary ion mass spectrometry instrument , 1999 .

[107]  M. Seah,et al.  Quantitative molecular depth profiling of organic delta-layers by C60 ion sputtering and SIMS. , 2008, Journal of Physical Chemistry B.

[108]  R. Odom,et al.  Matrix-enhanced secondary ion mass spectrometry:  a method for molecular analysis of solid surfaces. , 1996, Analytical chemistry.

[109]  J. Delmore,et al.  Focused, rasterable, high-energy neutral molecular beam probe for secondary ion mass spectrometry , 1987 .

[110]  V. Bermudez,et al.  Low-energy electron-beam effects on poly(methyl methacrylate) resist films , 1999 .

[111]  D. Weibel,et al.  Development of a C60+ ion gun for static SIMS and chemical imaging , 2003 .

[112]  K. Ichiki,et al.  A fragment-free ionization technique for organic mass spectrometry with large Ar cluster ions , 2008 .

[113]  E. Schweikert,et al.  Au-analyte adducts resulting from single massive gold cluster impacts , 2006 .

[114]  N. Larsen,et al.  Lateral and Vertical Quantification of Spin-Coated Polymer Films on Silicon by TOF-SIMS, XPS, and AFM , 2002 .

[115]  Y. Beyec Cluster impacts at keV and MeV energies: Secondary emission phenomena , 1998 .

[116]  H. Ade,et al.  Carbon-13 labeling for improved tracer depth profiling of organic materials using secondary ion mass spectrometry , 2006, Journal of the American Society for Mass Spectrometry.

[117]  C. A. Murray,et al.  Ion‐beam‐induced conductivity in polymer films , 1983 .

[118]  R. Cooks,et al.  Effects of primary ion polyatomicity and kinetic energy on secondary ion yield and internal energy in sims , 1990 .

[119]  V. Zaporojtchenko,et al.  Tailoring of the PS surface with low energy ions:relevance to growth and adhesion of noble metals , 2005 .

[120]  K. Ichiki,et al.  Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams. , 2009, Rapid communications in mass spectrometry : RCM.

[121]  S. J. Valenty,et al.  Multitechnique depth profiling of small molecules in polymeric matrixes , 1984 .

[122]  Takaaki Aoki,et al.  A new secondary ion mass spectrometry (SIMS) system with high-intensity cluster ion source , 2004 .

[123]  Arnaud Delcorte,et al.  keV fullerene interaction with hydrocarbon targets: Projectile penetration, damage creation and removal , 2007 .

[124]  N. Tuccitto,et al.  Chemical effects in C60 irradiation of polymers , 2006 .

[125]  L. Calcagno,et al.  Ion-beam-induced aggregation in polystyrene: The influence of the molecular parameters , 1988 .

[126]  G. Gillen,et al.  Preliminary evaluation of an SF5+ polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. , 1998, Rapid communications in mass spectrometry : RCM.

[127]  N. Sanada,et al.  The effect of angle of incidence to low damage sputtering of organic polymers using a C60 ion beam , 2008 .

[128]  L. Calcagno,et al.  Primary chemical events in ion bombarded polystyrene films: An infrared study , 1986 .

[129]  R. Wool,et al.  Investigation of diffusion in polystyrene using secondary ion mass spectroscopy , 1989 .

[130]  Robert M. Nishikawa,et al.  Preliminary evaluation of an , 1993 .

[131]  N. Winograd,et al.  Energy deposition during molecular depth profiling experiments with cluster ion beams. , 2008, Analytical chemistry.

[132]  L. Calcagno,et al.  Chain diffusion in ion crosslinked polystyrene gel , 1993 .

[133]  J. A. Schultz,et al.  Orthogonal time-of-flight secondary ion mass spectrometric analysis of peptides using large gold clusters as primary ions. , 2004, Rapid communications in mass spectrometry : RCM.

[134]  Crooks,et al.  Secondary ion yields produced by keV atomic and polyatomic ion impacts on a self-assembled monolayer surface , 1999, Rapid communications in mass spectrometry : RCM.

[135]  L. Calcagno,et al.  Ion irradiation of polymers , 1991 .

[136]  R. Wool,et al.  Diffusion of polymers at interfaces : a secondary ion mass spectroscopy study , 1991 .

[137]  H. Jungnickel,et al.  A comparative study of secondary ion yield from model biological membranes using Aun+ and C60+ primary ion sources , 2006 .

[138]  K. D. Krantzman,et al.  Molecular dynamics simulations to explore the role of mass matching in the keV bombardment of organic films with polyatomic projectiles , 2004 .

[139]  M. Wagner Degradation of poly(acrylates) under SF5+ primary ion bombardment studied using time‐of‐flight secondary ion mass spectrometry. 2. Poly(n‐alkyl methacrylates) , 2005 .

[140]  Vincent P. Calkins,et al.  Radiation Chemistry of Polymeric Systems , 1963 .

[141]  Isao Yamada,et al.  Materials Processing by Gas Cluster Ion Beams , 2001 .

[142]  Juan Cheng,et al.  Molecular depth profiling of multi-layer systems with cluster ion sources , 2006 .

[143]  W. V. Ooij,et al.  Interpretation of the fragmentation patterns in static SIMS analysis of polymers. Part I. Simple aliphatic hydrocarbons , 1988 .

[144]  Juan Cheng,et al.  Protocols for three-dimensional molecular imaging using mass spectrometry. , 2007, Analytical chemistry.

[145]  B. Douhard,et al.  Molecular depth-profiling of polycarbonate with low-energy Cs+ ions. , 2007, Rapid communications in mass spectrometry : RCM.

[146]  R. Rickman,et al.  Molecular ion emission from single large cluster impacts , 2006 .

[147]  M. E. Fragalá,et al.  AFM and XPS study of ion bombarded poly(methyl methacrylate) , 1997 .

[148]  T. Grehl,et al.  Depth profiling of organic materials using improved ion beam conditions , 2008 .

[149]  H. Ade,et al.  Investigation of the Effects of Isotopic Labeling at a PS/PMMA Interface Using SIMS and Mean-Field Theory , 2006 .

[150]  G. Boiteux,et al.  Relation between structure and electronic properties of ion irradiated polymers , 1989 .

[151]  Eal H. Lee,et al.  Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide , 1992 .

[152]  L. McDonnell,et al.  Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging , 2006, Journal of the American Society for Mass Spectrometry.

[153]  J. Schulz,et al.  Ion irradiation induced chemical changes of polymers used for optical applications , 1997 .

[154]  H. Ade,et al.  Secondary ion mass spectrometry depth profiling of amorphous polymer multilayers using O2+ and Cs+ ion bombardment with a magnetic sector instrument , 2006 .

[155]  C. Mahoney,et al.  Characterization of drug-eluting stent (DES) materials with cluster secondary ion mass spectrometry (SIMS) , 2006 .

[156]  N. Winograd The Magic of Cluster SIMS , 2005 .

[157]  N. Sanada,et al.  Extremely low sputtering degradation of polytetrafluoroethylene by C60 ion beam applied in XPS analysis , 2004 .

[158]  K. Wittmaack,et al.  Evidence for strongly enhanced yields of negative molecular secondary ions due to bombardment with SFn cluster ions , 1994 .

[159]  K. Narumi,et al.  Time-of-flight secondary ion mass spectroscopy for surface analysis of insulators using a cluster ion beam , 2003 .

[160]  N. Lockyer,et al.  TOF-SIMS analysis using C60. Effect of impact energy on yield and damage. , 2006, Analytical chemistry.

[161]  M. Wagner Degradation of poly(acrylates) under SF5+ primary ion bombardment studied using time‐of‐flight secondary ion mass spectrometry. 3. Poly(hydroxyethyl methacrylate) with chemical derivatization , 2005 .

[162]  A. Wucher Molecular secondary ion formation under cluster bombardment: A fundamental review , 2006 .

[163]  M. Iwaki,et al.  In vivo evaluation of antithrombogenicity for ion implanted silicone rubber using indium-111-tropolone platelets , 1991 .

[164]  B. Garrison,et al.  Enhancement of sputtering yields due to C60 versus Ga bombardment of Ag[111] as explored by molecular dynamics simulations. , 2003, Analytical chemistry.

[165]  B. Hagenhoff,et al.  Localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex with imaging TOF-SIMS equipped with a bismuth cluster ion source. , 2005, Biochimica et biophysica acta.

[166]  Scott E. Martin,et al.  Molecule-specific imaging with mass spectrometry and a buckminsterfullerene probe: application to characterizing solid-phase synthesized combinatorial libraries. , 2004, Journal of the American Chemical Society.

[167]  P. Bertrand,et al.  SURFACE TOPOGRAPHY DEVELOPMENT OF THIN POLYSTYRENE FILMS UNDER LOW ENERGY ION IRRADIATION , 1999 .

[168]  B. Garrison,et al.  Microscopic insights into the sputtering of thin organic films on Ag{111} induced by C60 and Ga bombardment. , 2005, The journal of physical chemistry. B.

[169]  Juan Cheng,et al.  Surface and depth profiling investigation of a drug-loaded copolymer utilized to coat taxus express2 stents. , 2006, Analytical chemistry.

[170]  F. Halgand,et al.  Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy Published, JLR Papers in Press, April 16, 2005. DOI 10.1194/jlr.M500058-JLR200 , 2005, Journal of Lipid Research.

[171]  R. Lareau,et al.  Negative cesium sputter ion source for generating cluster primary ion beams for secondary ion mass spectrometry analysis , 2001 .

[172]  K. Ichiki,et al.  High sputtering yields of organic compounds by large gas cluster ions , 2008 .

[173]  S. Della-Negra,et al.  High desorption—ionization yields of large biomolecules induced by fast C60 projectiles , 1997 .

[174]  René A. J. Janssen,et al.  Characterization of polymer solar cells by TOF-SIMS depth profiling , 2003 .

[175]  P. Blenkinsopp,et al.  The development of C60 and gold cluster ion guns for static SIMS analysis , 2004 .

[176]  N. Winograd,et al.  Chemically alternating langmuir-blodgett thin films as a model for molecular depth profiling by mass spectrometry , 2008, Journal of the American Society for Mass Spectrometry.

[177]  N. Winograd,et al.  C60 molecular depth profiling of a model polymer , 2004 .

[178]  Judith Stein,et al.  Application of the dynamic SIMS technique to the study of silicone release coatings , 1991 .

[179]  G. Gillen,et al.  Temperature-controlled depth profiling in polymeric materials using cluster secondary ion mass spectrometry (SIMS) , 2006 .

[180]  J. Moulder,et al.  C60 sputtering of organics: A study using TOF-SIMS, XPS and nanoindentation , 2008 .

[181]  N. Lockyer,et al.  Properties of C84 and C24H12 molecular ion sources for routine TOF-SIMS analysis. , 2007, Analytical chemistry.

[182]  Jong Wan Lee,et al.  Investigation of ion bombarded polymer surfaces using SIMS, XPS and AFM , 1997 .

[183]  G. Nagy,et al.  An investigation of enhanced secondary ion emission under Aun+ (n=1–7) bombardment , 2005, Journal of the American Society for Mass Spectrometry.

[184]  B. Garrison,et al.  MECHANISM FOR INCREASED YIELD WITH SF5+ PROJECTILES IN ORGANIC SIMS : THE SUBSTRATE EFFECT , 1999 .

[185]  H. Ryssel,et al.  AFM surface investigation of polyethylene modified by ion bombardment , 1998 .

[186]  T. Kwei,et al.  Organization and orientation of a triblock copolymer poly(ethylene glycol)-b-poly(p-phenylene ethynylene)-b-poly(ethylene glycol) and its blends in thin films , 2001 .

[187]  Juan Cheng,et al.  Direct comparison of Au3+ and C60+ cluster projectiles in SIMS molecular depth profiling , 2007, Journal of the American Society for Mass Spectrometry.

[188]  Eal H. Lee,et al.  Ion beam application for improved polymer surface properties , 1993 .

[189]  Juan Cheng,et al.  Depth profiling of peptide films with TOF-SIMS and a C60 probe. , 2005, Analytical chemistry.

[190]  N. Lockyer,et al.  Mass spectral analysis and imaging of tissue by ToF-SIMS—The role of buckminsterfullerene, C60+, primary ions , 2007 .

[191]  M. Wagner Impact energy dependence of SF5+-induced damage in poly(methyl methacrylate) studied using time-of-flight secondary ion mass spectrometry. , 2004, Analytical Chemistry.

[192]  M. Seah,et al.  Analysis of the interface and its position in C60(n+) secondary ion mass spectrometry depth profiling. , 2009, Analytical chemistry.

[193]  J. Clabes,et al.  Secondary ion emission and sputter yields from metal targets under fluorine ion (F2+) bombardment , 1988 .

[194]  S. Schwarz,et al.  Dynamics of polymers in organosilicate nanocomposites , 2003 .

[195]  N. Lockyer,et al.  Molecular depth profiling of organic and biological materials , 2006 .

[196]  M. Salehpour,et al.  Collective effects in electronic sputtering of organic molecular ions by fast incident cluster ions , 1988 .

[197]  M. Seah,et al.  Electron flood gun damage in the analysis of polymers and organics in time-of-flight SIMS , 2002 .

[198]  A. Paul,et al.  DSIMS characterization of a drug-containing polymer-coated cardiovascular stent. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[199]  A. Benninghoven,et al.  Application of atomic and molecular primary ions for TOF–SIMS analysis of additive containing polymer surfaces , 2001 .

[200]  S. Schwarz,et al.  Secondary ion mass spectrometry study of silicon surface preparation and the polystyrene/silicon interface , 1997 .

[201]  Nicholas Lockyer,et al.  A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. , 2003, Analytical chemistry.

[202]  L. S. Farenzena,et al.  Probing glass transition of PMMA thin films at the nanometer scale with single ion bombardment and scanning force microscopy , 2001 .

[203]  F. Kollmer Cluster primary ion bombardment of organic materials , 2004 .

[204]  W. Moore,et al.  Sputtering of Silver by Light Ions with Energies from 2 to 12 kev , 1960 .

[205]  M. Seah Cluster ion sputtering: molecular ion yield relationships for different cluster primary ions in static SIMS of organic materials , 2007 .

[206]  J. Delmore,et al.  Comparison of polyatomic and atomic primary beams for secondary ion mass spectrometry of organics , 1989 .

[207]  D. Briggs,et al.  Analysis of polymer surfaces by SIMS. 12. On the fragmentation of acrylic and methacrylic homopolymers and the interpretation of their positive and negative ion spectra , 1988 .

[208]  K. Ichiki,et al.  What size of cluster is most appropriate for SIMS , 2008 .

[209]  K. Wittmaack,et al.  Time-of-flight secondary ion mass spectrometry of matrix-diluted oligo- and polypeptides bombarded with slow and fast projectiles: Positive and negative matrix and analyte ion yields, background signals, and sample aging , 2000, Journal of the American Society for Mass Spectrometry.

[210]  L. Calcagno Ion-chains interaction in polymers , 1995 .

[211]  R. Papaléo,et al.  Relaxation of craters produced by ion bombardment on PMMA as a function of temperature , 2006 .

[212]  Terry D. Lee,et al.  Massive cluster impact mass spectrometry: a new desorption method for the analysis of large biomolecules. , 1991, Rapid communications in mass spectrometry : RCM.

[213]  R. Rickman,et al.  Influence of massive projectile size and energy on secondary ion yields from organic surfaces , 2006 .

[214]  H. Nonaka,et al.  Development of compact cluster ion sources using metal cluster complexes: Ionization properties of metal cluster complexes , 2004 .

[215]  Thomas P. Russell,et al.  Studies of surface and interface segregation in polymer blends by secondary ion mass spectrometry , 1992 .

[216]  G. Gillen,et al.  Performance of a C60+ ion source on a dynamic SIMS instrument , 2006 .

[217]  Orazio Puglisi,et al.  Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate , 1996 .

[218]  C. W. T. Bulle‐Lieuwma,et al.  3D-TOFSIMS characterization of black spots in polymer light emitting diodes , 2006 .

[219]  B. Garrison,et al.  Microscopic Insights into the Sputtering of Ag{111} Induced by C60 and Ga Bombardment , 2004 .

[220]  J. Forrest,et al.  Characterisation of sub micron salt-doped polymer electrolyte films , 2000 .

[221]  A. Appelhans,et al.  Characterization of VX on concrete using ion trap secondary ionization mass spectrometry , 2000, Journal of the American Society for Mass Spectrometry.

[222]  M. Iwaki,et al.  Structure and morphology of ion-implanted polyimide films , 1987 .