A homotopy method applied to elastica problems
暂无分享,去创建一个
[1] W. G. Bickley D.Sc.,et al. L. The heavy elastica , 1934 .
[2] Die Kreisringfeder. Zur Theorie des geschlossenen Kreisringes mit großer Formänderung , 1943 .
[3] LARGE DEFLECTIONS OF A SQUARE FRAME , 1964 .
[4] I. Tadjbakhsh,et al. Equilibrium states of elastic rings , 1967 .
[5] John V. Huddleston,et al. Nonlinear buckling and snap-over of a two-member frame , 1967 .
[6] H. Porath. Stress induced magnetic anisotropy in natural single crystals of hematite , 1968 .
[7] A Numerical Technique For Elastica Problems , 1968 .
[8] R. H. Mallett,et al. Finite Element Analysis of Nonlinear Structures , 1968 .
[9] George C. Lee,et al. Finite element solution to an elastica problem of beams , 1970 .
[10] T. E. Shoup,et al. On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms , 1971 .
[11] R. Schmidt,et al. Buckling of clamped circular arches subjected to a point load , 1972 .
[12] T. E. Shoup. On the Use of the Nodal Elastica for the Analysis of Flexible Link Devices , 1972 .
[13] Joseph E. Flaherty,et al. Contact Problems Involving a Buckled Elastica , 1973 .
[14] T. Y. Yang,et al. Matrix displacement solution to elastica problems of beams and frames , 1973 .
[15] L. Shampine,et al. Computer solution of ordinary differential equations : the initial value problem , 1975 .
[16] N. M. Sevak,et al. Optimal Synthesis of Flexible Link Mechanisms with Large Static Deflections , 1975 .
[17] L. Watson. Solving the Nonlinear Complementarity Problem by a Homotopy Method , 1979 .
[18] L. Watson. An Algorithm That is Globally Convergent with Probability One for a Class of Nonlinear Two-Point Boundary Value Problems , 1979 .
[19] Layne T. Watson,et al. Fixed points of C2 maps , 1979 .
[20] L. Watson. A globally convergent algorithm for computing fixed points of C2 maps , 1979 .
[21] T. Y. Na,et al. Computational methods in engineering boundary value problems , 1979 .