Automatic learner summary assessment for reading comprehension

Automating the assessment of learner summary provides a useful tool for assessing learner reading comprehension. We present a summarization task for evaluating non-native reading comprehension and propose three novel approaches to automatically assess the learner summaries. We evaluate our models on two datasets we created and show that our models outperform traditional approaches that rely on exact word match on this task. Our best model produces quality assessments close to professional examiners.

[1]  Susan T. Dumais,et al.  Latent semantic analysis , 2005, Scholarpedia.

[2]  Eduard H. Hovy,et al.  Automatic Evaluation of Summaries Using N-gram Co-occurrence Statistics , 2003, NAACL.

[3]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[4]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[5]  Carlo Strapparava,et al.  Corpus-based and Knowledge-based Measures of Text Semantic Similarity , 2006, AAAI.

[6]  Phil Blunsom,et al.  Reasoning about Entailment with Neural Attention , 2015, ICLR.

[7]  Alon Lavie,et al.  Meteor 1.3: Automatic Metric for Reliable Optimization and Evaluation of Machine Translation Systems , 2011, WMT@EMNLP.

[8]  Danielle S. McNamara,et al.  Scoring Summaries Using Recurrent Neural Networks , 2018, ITS.

[9]  Cyril J. Weir,et al.  Measured Constructs: A History of Cambridge English Examinations, 1913-2012 , 2013 .

[10]  Sanja Fidler,et al.  Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  J. Alderson Assessing Reading: Acknowledgements , 2000 .

[12]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[13]  Kathleen McKeown,et al.  Improving Word Sense Disambiguation in Lexical Chaining , 2003, IJCAI.

[14]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[15]  Alexander Gammerman,et al.  Ridge Regression Learning Algorithm in Dual Variables , 1998, ICML.

[16]  Shuohang Wang,et al.  Machine Comprehension Using Match-LSTM and Answer Pointer , 2016, ICLR.

[17]  Denise Whitelock,et al.  OpenEssayist: an automated feedback system that supports university students as they write summative essays , 2013 .

[18]  Vasile Rus,et al.  A Comparison of Greedy and Optimal Assessment of Natural Language Student Input Using Word-to-Word Similarity Metrics , 2012, BEA@NAACL-HLT.

[19]  Rada Mihalcea,et al.  TextRank: Bringing Order into Text , 2004, EMNLP.

[20]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[21]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[22]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[23]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[24]  Benoît Lemaire,et al.  Computational cognitive models of summarization assessment skills , 2005 .

[25]  Wai Lam,et al.  MEAD - A Platform for Multidocument Multilingual Text Summarization , 2004, LREC.

[26]  Ani Nenkova,et al.  The Pyramid Method: Incorporating human content selection variation in summarization evaluation , 2007, TSLP.

[27]  Sanja Fidler,et al.  Skip-Thought Vectors , 2015, NIPS.

[28]  Nitin Madnani,et al.  Automated Scoring of a Summary-Writing Task Designed to Measure Reading Comprehension , 2013, BEA@NAACL-HLT.

[29]  Eileen Kintsch,et al.  Summary Street: Interactive Computer Support for Writing , 2004 .

[30]  Ted Briscoe,et al.  Text Readability Assessment for Second Language Learners , 2016, BEA@NAACL-HLT.

[31]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[32]  S. Dumais Latent Semantic Analysis. , 2005 .