A systematic approach to unstructured mesh generation for ocean modelling using GMT and Terreno

A systematic approach to unstructured mesh generation for ocean modelling is presented. The method optimises unstructured meshes to approximate bathymetry to a user specified accuracy which may be defined as a function of longitude, latitude and bathymetry. GMT (Generic Mapping Tools) is used to perform the initial griding of the bathymetric data. Subsequently, the Terreno meshing package combines automated shoreline approximation, mesh gradation and optimisation methods to generate high-quality bathymetric meshes. The operation of Terreno is based upon clearly defined error measures and this facilitates the automation of unstructured mesh generation while minimising user intervention and the subjectivity that this can introduce.

[1]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[3]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[4]  Mark A. Duchaineau,et al.  ROAMing terrain: real-time optimally adapting meshes , 1997 .

[5]  E. A. Soluri,et al.  World Vector Shoreline , 1990 .

[6]  Christopher C. Pain,et al.  Shoreline approximation for unstructured mesh generation , 2007, Comput. Geosci..

[7]  Mark S. Shephard,et al.  Recovery of an arbitrary edge on an existing surface mesh using local mesh modifications , 2001 .

[8]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[9]  Alistair Adcroft,et al.  How slippery are piecewise‐constant coastlines in numerical ocean models? , 1998 .

[10]  Eric Deleersnijder,et al.  High-resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia , 2006 .

[11]  M. Stern,et al.  Separation of a Density Current from the Bottom of a Continental Slope , 1998 .

[12]  Eric P. Chassignet,et al.  Impact of wind forcing, bottom topography, and inertia on midlatitude jet separation in a quasigeostrophic model , 1997 .

[13]  Eric Deleersnijder,et al.  Delaunay mesh generation for an unstructured-grid ocean general circulation model , 2000 .

[14]  Jean-François Remacle,et al.  Anisotropic Mesh Gradation Control , 2004, IMR.

[15]  David P. Marshall,et al.  On the influence of bottom topography and the Deep Western Boundary Current on Gulf Stream separation , 2000 .

[16]  Roy A. Walters,et al.  Geometrically based, automatic generator for irregular triangular networks , 1993 .

[17]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[18]  Joannes J. Westerink,et al.  Two-dimensional, unstructured mesh generation for tidal models , 2001 .

[19]  Walter H. F. Smith,et al.  A global, self‐consistent, hierarchical, high‐resolution shoreline database , 1996 .

[20]  C.R.E. de Oliveira,et al.  Optimisation based bathymetry approximation through constrained unstructured mesh adaptivity , 2006 .

[21]  Christopher C. Pain,et al.  Numerical Modeling of Tides in the Late Pennsylvanian Midcontinent Seaway of North America with Implications for Hydrography and Sedimentation , 2007 .

[22]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[23]  M. Garland,et al.  Fast Polygonal Approximation of Terrains and Height Fields , 1998 .

[24]  T. Vincenty DIRECT AND INVERSE SOLUTIONS OF GEODESICS ON THE ELLIPSOID WITH APPLICATION OF NESTED EQUATIONS , 1975 .

[25]  Walter H. F. Smith,et al.  Gridding with continuous curvature splines in tension , 1990 .