The construction and use of LISA sensitivity curves

The Laser Interferometer Space Antenna (LISA) will open the mHz band of the gravitational wave spectrum for exploration. Sensitivity curves are a useful tool for surveying the types of sources that can be detected by the LISA mission. Here we describe how the sensitivity curve is constructed, and how it can be used to compute the signal-to-noise ratio for a wide range of binary systems. We adopt the 2018 LISA mission performance requirement design parameters. We consider both sky-averaged sensitivities, and the sensitivity to sources at particular sky locations. The calculations are included in a publicly available Python notebook.

[1]  J. Gair,et al.  Augmented kludge waveforms for detecting extreme-mass-ratio inspirals , 2017, 1705.04259.

[2]  N. Cornish,et al.  Galactic binary science with the new LISA design , 2017, 1703.09858.

[3]  Ulrike Goldschmidt,et al.  Three Hundred Years Of Gravitation , 2016 .

[4]  F. Ohme,et al.  Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter , 2014, 1408.1810.

[5]  M. Hannam Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects , 2013, General Relativity and Gravitation.

[6]  Warren R. Brown,et al.  RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844 , 2012, 1208.5051.

[7]  M. Vallisneri,et al.  Non-sky-averaged sensitivity curves for space-based gravitational-wave observatories , 2012, 1201.3684.

[8]  P. Ajith,et al.  A phenomenological template family for black-hole coalescence waveforms , 2007, 0704.3764.

[9]  Y. Zlochower,et al.  Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.

[10]  L. Rubbo,et al.  Forward modeling of space borne gravitational wave detectors , 2003, gr-qc/0311069.

[11]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[12]  N. Cornish Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna , 2001, gr-qc/0106058.

[13]  T. Damour Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[14]  J. Armstrong,et al.  Time-delay analysis of LISA gravitational data: elimination spacecraft motion effects , 2000 .

[15]  S. Larson,et al.  Sensitivity curves for spaceborne gravitational wave interferometers , 1999, gr-qc/9909080.

[16]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[17]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[18]  R. Schilling Angular and frequency response of LISA , 1997 .

[19]  G.Giampieri On the Antenna Pattern of an Orbiting Interferometer , 1997, gr-qc/9704069.

[20]  Kidder,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[21]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.