Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver

[1]  Benedict D. Rogers,et al.  Godunov‐type adaptive grid model of wave–current interaction at cuspate beaches , 2004 .

[2]  Pilar García-Navarro,et al.  Efficient construction of high‐resolution TVD conservative schemes for equations with source terms: application to shallow water flows , 2001 .

[3]  José M. Corberán,et al.  Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws , 2001 .

[4]  D. Causon,et al.  The surface gradient method for the treatment of source terms in the shallow-water equations , 2001 .

[5]  Hua Liu,et al.  The Ultimate Boussinesq Formulation for Highly Dispersive and Highly Nonlinear Water Waves , 2001 .

[6]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[7]  Alistair G.L. Borthwick,et al.  Quadtree grid numerical model of nearshore wave–current interaction , 2001 .

[8]  Masayuki Fujihara,et al.  Adaptive Q-tree Godunov-type scheme for shallow water equations , 2001 .

[9]  Bin Li,et al.  Three-Dimensional Model of Navier-Stokes Equations for Water Waves , 2001 .

[10]  Pilar García-Navarro,et al.  Flux difference splitting and the balancing of source terms and flux gradients , 2000 .

[11]  Derek M. Causon,et al.  Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations , 2000 .

[12]  Masayuki Fujihara,et al.  Godunov-Type Solution of Curvilinear Shallow-Water Equations , 2000 .

[13]  Tai-Wen Hsu,et al.  Comparison of wave refraction and diffraction models , 2000 .

[14]  P. García-Navarro,et al.  On numerical treatment of the source terms in the shallow water equations , 2000 .

[15]  M. Vázquez-Cendón Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry , 1999 .

[16]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[17]  K. Anastasiou,et al.  An efficient computational model for water wave propagation in coastal regions , 1998 .

[18]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[19]  K. Anastasiou,et al.  SOLUTION OF THE 2D SHALLOW WATER EQUATIONS USING THE FINITE VOLUME METHOD ON UNSTRUCTURED TRIANGULAR MESHES , 1997 .

[20]  R. Soulsby Dynamics of marine sands , 1997 .

[21]  D. Zhao,et al.  Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling , 1996 .

[22]  Jan Madsen,et al.  An approach to interface synthesis , 1995, Proceedings of the Eighth International Symposium on System Synthesis.

[23]  Davide Carlo Ambrosi,et al.  Approximation of shallow water equations by Roe's Riemann solver , 1995 .

[24]  Marinko Nujić,et al.  Efficient implementation of non-oscillatory schemes for the computation of free-surface flows , 1995 .

[25]  Pilar García-Navarro,et al.  A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS , 1993 .

[26]  C. Kranenburg Wind-driven chaotic advection in a shallow model lake , 1992 .

[27]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[28]  C. Hirsch Computational methods for inviscid and viscous flows , 1990 .

[29]  B. O'CONNOR,et al.  DIFFRACTION OF WAVES IN CAUSTICS , 1988 .

[30]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[31]  William A. Birkemeier,et al.  Beach and nearshore survey data, 1981-1984, CERC Field Research Facility / by Peter A. Howd, William A. Birkemeier, Coastal Engineering Research Center ; prepared for Department of the Army, US Army Corps of Engineers. , 1987 .

[32]  Philip L. Roe,et al.  Efficient construction and utilisation of approximate riemann solutions , 1985 .

[33]  Robert G. Dean,et al.  Water wave mechanics for engineers and scientists , 1983 .

[34]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[35]  A. C. Radder,et al.  Verification of numerical wave propagation models for simple harmonic linear water waves , 1982 .

[36]  Da Silva Limia Wave-induced nearshore currents , 1981 .

[37]  R. Eubanks,et al.  Wave-Induced Circulation in Shallow Basins , 1977 .

[38]  E. Thornton VARIATION OP LONGSHORE CURRENT ACROSS THE SURF ZONE , 1970 .

[39]  J. A. Battjes Refraction of Water Waves , 1968 .

[40]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .