Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications

Abstract A promising anode material for hybrid electric vehicles (HEVs) is Li 4 Ti 5 O 12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn 2 O 4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn 2 O 4 cathode materials.

[1]  J. Jumas,et al.  Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel , 2004 .

[2]  Yang-Kook Sun,et al.  Nanostructured Anode Material for High‐Power Battery System in Electric Vehicles , 2010, Advanced materials.

[3]  Michael M. Thackeray,et al.  Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries , 1995 .

[4]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[5]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[6]  Paul A. Nelson,et al.  Development of a high-power lithium-ion battery , 1998 .

[7]  Tsutomu Ohzuku,et al.  Why transition metal (di)oxides are the most attractive materials for batteries , 1994 .

[8]  A. Deschanvres,et al.  Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .

[9]  K. Amine,et al.  Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathode materials , 2008 .

[10]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[11]  Tingfeng Yi,et al.  Recent development and application of Li4Ti5O12 as anode material of lithium ion battery , 2010 .

[12]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[13]  Ilias Belharouak,et al.  Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications , 2004 .

[14]  J. Dahn,et al.  Synthesis and electrochemistry of spinel LTLiCoO2 , 1993 .

[15]  K. Abraham,et al.  Preparation of micron-sized Li{sub 4}Ti{sub 5}O{sub 12} and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells , 1998 .

[16]  D. Murphy,et al.  Ternary LixTiO2 phases from insertion reactions , 1983 .

[17]  Werner Weppner,et al.  Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel , 1999 .

[18]  M. Tournoux,et al.  Phases LixMnO2λ rattachees au type spinelle , 1983 .

[19]  Yang-Kook Sun,et al.  On the Safety of the Li4Ti5O12 ∕ LiMn2O4 Lithium-Ion Battery System , 2007 .

[20]  Ju-Wan Kim,et al.  Polyol-mediated synthesis of Li4Ti5O12 nanoparticle and its electrochemical properties , 2005 .

[21]  B. Scrosati,et al.  Structural and electrochemical study on Li(Li1/3Ti5/3)O4 anode material for lithium ion batteries , 2000 .

[22]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[23]  J. Pereira‐Ramos,et al.  Electrochemical properties of sol–gel Li4/3Ti5/3O4 , 1999 .

[24]  A. Lewandowski,et al.  Properties of LiMn2O4 cathode in electrolyte based on N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide , 2010 .

[25]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .