InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters

The recent study of a wide range of layered transition metal dichalcogenides (TMDCs) has created a new era for device design and applications. In particular, the concept of van der Waals epitaxy (vdWE) utilizing layered TMDCs has the potential to broaden the family of epitaxial growth techniques beyond the conventional methods. We report herein, for the first time, the monolithic high-power, droop-free, and wavelength tunable InGaN/GaN nanowire light-emitting diodes (NW-LEDs) on large-area MoS2 layers formed by sulfurizing entire Mo substrates. MoS2 serves as both a buffer layer for high-quality GaN nanowires growth and a sacrificial layer for epitaxy lift-off. The LEDs obtained on nitridated MoS2 via quasi vdWE show a low turn-on voltage of ∼2 V and light output power up to 1.5 mW emitting beyond the “green gap”, without an efficiency droop up to the current injection of 1 A (400 A cm−2), by virtue of high thermal and electrical conductivities of the metal substrates. The discovery of the nitride/layered TMDCs/metal heterostructure platform also ushers in the unparalleled opportunities of simultaneous high-quality nitrides growth for high-performance devices, ultralow-profile optoelectronics, energy harvesting, as well as substrate reusability for practical applications.

[1]  Jared M. Johnson,et al.  Remote epitaxy through graphene enables two-dimensional material-based layer transfer , 2017, Nature.

[2]  C. Surya,et al.  Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer , 2016, Scientific Reports.

[3]  E. Fred Schubert,et al.  Arrays of Truncated Cone AlGaN Deep-Ultraviolet Light-Emitting Diodes Facilitating Efficient Outcoupling of in-Plane Emission , 2016 .

[4]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[5]  Jing Kong,et al.  Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS2 Circuits with E-Mode FETs for Large-Area Electronics. , 2016, Nano letters.

[6]  N. Gogneau,et al.  Epitaxy of GaN Nanowires on Graphene. , 2016, Nano letters.

[7]  Moon J. Kim,et al.  Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure. , 2016, Nano letters.

[8]  Rami T. Elafandy,et al.  Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics. , 2016, Nano letters.

[9]  Y. Arakawa,et al.  Single Photons from a Hot Solid-State Emitter at 350 K , 2016 .

[10]  Caihong Liu,et al.  Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio. , 2016, ACS nano.

[11]  Chao Shen,et al.  Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters. , 2016, Nano letters.

[12]  J. Tersoff,et al.  Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction , 2015, Nature Communications.

[13]  Pallab Bhattacharya,et al.  III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001)silicon , 2015 .

[14]  Pallab Bhattacharya,et al.  An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination. , 2015, Nanoscale.

[15]  Huili Grace Xing,et al.  Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth , 2015, Scientific Reports.

[16]  Luchi Yao,et al.  Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer , 2015 .

[17]  D. Katzer,et al.  Epitaxial metallic β-Nb2N films grown by MBE on hexagonal SiC substrates , 2015 .

[18]  Y. Lan,et al.  Excitonic Resonant Emission–Absorption of Surface Plasmons in Transition Metal Dichalcogenides for Chip-Level Electronic–Photonic Integrated Circuits , 2015, 1507.01974.

[19]  R. Zheng,et al.  Low‐Dimensional Structure Vacuum‐Ultraviolet‐Sensitive (λ < 200 nm) Photodetector with Fast‐Response Speed Based on High‐Quality AlN Micro/Nanowire , 2015, Advanced materials.

[20]  Fan Yang,et al.  Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices. , 2015, Small.

[21]  O Brandt,et al.  Epitaxial Growth of GaN Nanowires with High Structural Perfection on a Metallic TiN Film. , 2015, Nano letters.

[22]  Franz-Josef Tegude,et al.  High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111). , 2015, Nano letters.

[23]  O. Brandt,et al.  Monitoring the formation of nanowires by line-of-sight quadrupole mass spectrometry: a comprehensive description of the temporal evolution of GaN nanowire ensembles. , 2015, Nano letters.

[24]  Pallab Bhattacharya,et al.  Formation and nature of InGaN quantum dots in GaN nanowires. , 2015, Nano letters.

[25]  Shanshan Yao,et al.  Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS₂ films onto arbitrary substrates. , 2014, ACS nano.

[26]  Kang L. Wang,et al.  Towards van der Waals Epitaxial Growth of GaAs on Si using a Graphene Buffer Layer , 2014 .

[27]  C. Dimitrakopoulos,et al.  Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene , 2014, Nature Communications.

[28]  T. Frost,et al.  A monolithic electrically-injected nanowire array edge-emitting laser on (001) silicon , 2014, Photonics West - Optoelectronic Materials and Devices.

[29]  E. Fred Schubert,et al.  Energy Frontier Research Center for Solid-State Lighting Science: Exploring New Materials Architectures and Light Emission Phenomena , 2014 .

[30]  Pallab Bhattacharya,et al.  Red to near-infrared emission from InGaN/GaN quantum-disks-in-nanowires LED , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[31]  Cheul‐Ro Lee,et al.  Different characteristics of InGaN/GaN multiple quantum well heterostructures grown on m- and r-planes of a single n-GaN nanowire using metalorganic chemical vapor deposition , 2014 .

[32]  Young Joon Hong,et al.  Van der Waals Epitaxial Double Heterostructure: InAs/Single‐Layer Graphene/InAs , 2013, Advances in Materials.

[33]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[34]  M. Deshmukh,et al.  MOVPE growth of semipolar III-nitride semiconductors on CVD graphene , 2013 .

[35]  J. Arbiol,et al.  Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. , 2013, Nanoscale.

[36]  P. Bhattacharya,et al.  Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire , 2013, Nature Communications.

[37]  Eric Pop,et al.  In(x)Ga(1-x)As nanowire growth on graphene: van der Waals epitaxy induced phase segregation. , 2013, Nano letters.

[38]  G. Eda,et al.  An innovative way of etching MoS2: Characterization and mechanistic investigation , 2013, Nano Reseach.

[39]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[40]  K. Kumakura,et al.  Layered boron nitride as a release layer for mechanical transfer of GaN-based devices , 2012, Nature.

[41]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[42]  Wi Hyoung Lee,et al.  van der Waals epitaxy of InAs nanowires vertically aligned on single-layer graphene. , 2012, Nano letters.

[43]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[44]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[45]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[46]  Young Joon Hong,et al.  Flexible Inorganic Nanostructure Light‐Emitting Diodes Fabricated on Graphene Films , 2011, Advanced materials.

[47]  P. Bhattacharya,et al.  Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics. , 2011, Nano letters.

[48]  Z. Mi,et al.  Photoluminescence Properties of a Nearly Intrinsic Single InN Nanowire , 2010 .

[49]  G. Yi,et al.  Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices , 2010, Science.

[50]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[51]  Dmitri Golberg,et al.  Current imaging and electromigration-induced splitting of GaN nanowires as revealed by conductive atomic force microscopy. , 2010, ACS nano.

[52]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[53]  George T. Wang,et al.  Nanowire‐Templated Lateral Epitaxial Growth of Low‐Dislocation Density Nonpolar a‐Plane GaN on r‐Plane Sapphire , 2009 .

[54]  A. K. Bhaduri,et al.  Recrystallization of epitaxial GaN under indentation , 2008, 0804.1824.

[55]  J. Fischer,et al.  Defects in GaN Nanowires , 2006 .

[56]  K. Inumaru,et al.  Synthesis and Characterization of Superconducting β‐Mo2N Crystalline Phase on a Si Substrate: An Application of Pulsed Laser Deposition to Nitride Chemistry. , 2005 .

[57]  D. Kim,et al.  High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays , 2004 .

[58]  Walter Assmann,et al.  High temperature nitrogen plasma immersion ion implantation into molybdenum , 2004 .

[59]  Chennupati Jagadish,et al.  Chemical origin of the yellow luminescence in GaN , 2002 .

[60]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[61]  K. Akimoto,et al.  Molecular beam epitaxy of GaN on a substrate of MoS2 layered compound , 1999 .

[62]  S. Major,et al.  Deposition of molybdenum nitride thin films by r.f. reactive magnetron sputtering , 1996 .

[63]  Piet Demeester,et al.  Epitaxial lift-off and its applications , 1993 .