The Structure of Root Data and Smooth Regular Embeddings of Reductive Groups
暂无分享,去创建一个
[1] Jay Taylor. Action of automorphisms on irreducible characters of symplectic groups , 2016, Journal of Algebra.
[2] M. Geck,et al. Reductive Groups and Steinberg Maps , 2016, The Character Theory of Finite Groups of Lie Type.
[3] Jay Taylor. GENERALIZED GELFAND–GRAEV REPRESENTATIONS IN SMALL CHARACTERISTICS , 2014, Nagoya Mathematical Journal.
[4] J. Michel. The development version of the CHEVIE package of GAP3 , 2013, 1310.7905.
[5] Noor Kafil-Hussain. Polo , 2007, BMJ : British Medical Journal.
[6] F. Shahidi,et al. Generic Transfer for General Spin Groups , 2004, math/0411035.
[7] G. Lusztig,et al. Representations of reductive groups over finite fields , 2004 .
[8] A. Aubert,et al. SUPPORTS UNIPOTENTS DE FAISCEAUX CARACTÈRES , 2003, Journal of the Institute of Mathematics of Jussieu.
[9] Hisatoshi Ikai. Spin Groups Over a Commutative Ring and the Associated Root Data , 2003 .
[10] B. Martin. Étale slices for representation varieties in characteristic p , 1999 .
[11] M. Geck,et al. On the existence of a unipotent support for the irreducible characters of a finite group of Lie type , 1999 .
[12] R. Steinberg. The Isomorphism and Isogeny Theorems for Reductive Algebraic Groups , 1999 .
[13] D. Voce,et al. Tame automorphisms of finitely generated abelian groups , 1998, Proceedings of the Edinburgh Mathematical Society.
[14] Götz Pfeiffer,et al. CHEVIE — A system for computing and processing generic character tables , 1996, Applicable Algebra in Engineering, Communication and Computing.
[15] George Lusztic. A unipotent support for irreducible representations , 1992 .
[16] Jean Michel,et al. Representations of Finite Groups of Lie Type , 1991 .
[17] George Lusztig,et al. Characters of reductive groups over a finite field , 1984 .
[18] Charles W. Curtis,et al. Representations of finite groups of Lie type , 1979 .
[19] G. Lusztig. On the finiteness of the number of unipotent classes , 1976 .
[20] J. Humphreys,et al. Linear Algebraic Groups , 1975 .
[21] R. Tennant. Algebra , 1941, Nature.
[22] O. Gabber,et al. Pseudo-reductive Groups , 2010 .
[23] C. Bonnafé. Sur les caractères des groupes réductifs finis à centre non connexe : applications aux groupes spéciaux linéaires et unitaires , 2018, Astérisque.
[24] F. Murnaghan,et al. LINEAR ALGEBRAIC GROUPS , 2005 .
[25] Ronald L. Graham,et al. The graph of generating sets of an abelian group , 1999 .
[26] M. Geck. On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes , 1996, Documenta Mathematica.
[27] A. Borel. Linear Algebraic Groups , 1991 .
[28] George Lusztig,et al. On the representations of reductive groups with disconnected cen-tre , 1988 .
[29] J. Jantzen. Representations of algebraic groups , 1987 .
[30] M. Demazure. Structure des schémas en groupes réductifs , 1970 .