Multi-body Inverse Dynamic Modeling and Analysis of Six-Legged Robots

In this chapter, investigations conforming to the optimal feet forces’ distributions under body force and foot–ground interactions for a realistic robot locomoting on various terrains have been explained. The constrained inverse dynamics model is formulated as a coupled dynamical problem using Newton–Euler (NE) approach in Cartesian coordinates. Kinematic transformations approach is implemented, whereby the robot kinematics in Cartesian space with large implicit constraints is transformed to joint space with a reduced explicit set of constrained equations to tackle the complexities and make the computation less intensive.

[1]  Shin-Min Song,et al.  Dynamic modeling, stability, and energy efficiency of a quadrupedal walking machine , 2001, J. Field Robotics.

[2]  E Otten,et al.  Inverse and forward dynamics: models of multi-body systems. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  Shuzhi Sam Ge,et al.  Contact-Force Distribution Optimization and Control for Quadruped Robots Using Both Gradient and Adaptive Neural Networks , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Kemal Leblebicioglu,et al.  Torque Distribution in a Six-Legged Robot , 2007, IEEE Transactions on Robotics.

[5]  Charles A. Klein,et al.  Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion , 1985, IEEE J. Robotics Autom..

[6]  Tatsuo Arai,et al.  Development of multi-limb robot with omnidirectional manipulability and mobility , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[7]  R. McGhee,et al.  On the stability properties of quadruped creeping gaits , 1968 .

[8]  David E. Orin,et al.  Optimal force distribution in multiple-chain robotic systems , 1991, IEEE Trans. Syst. Man Cybern..

[9]  K. Kurien Issac,et al.  Minimum energy force distribution for a walking robot , 2001 .

[10]  Yong-San Yoon,et al.  Dynamic instant gait stability measure for quadruped walking robot , 1999, Robotica.

[11]  Pablo González de Santos,et al.  A comparative study of stability margins for walking machines , 2002, Robotica.

[12]  Dilip Kumar Pratihar,et al.  Study on feet forces' distributions, energy consumption and dynamic stability measure of hexapod robot during crab walking , 2019, Applied Mathematical Modelling.

[13]  Shigeo Hirose,et al.  Attitude and Steering Control of the Long Articulated Body Mobile Robot KORYU , 2007 .

[14]  Dilip Kumar Pratihar,et al.  Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot , 2013 .

[15]  Guy Bessonnet,et al.  Parametric-based dynamic synthesis of 3D-gait , 2009, Robotica.

[16]  Dilip Kumar Pratihar,et al.  Kinematics, Dynamics and Power Consumption Analyses for Turning Motion of a Six-Legged Robot , 2014, J. Intell. Robotic Syst..

[17]  Fan-Tien Cheng,et al.  Optimal force distribution in multilegged vehicles , 1999, Robotica.

[18]  Kemal Leblebicioglu,et al.  Analysis of wave gaits for energy efficiency , 2006, 2006 IEEE 14th Signal Processing and Communications Applications.

[19]  Tomas Luneckas,et al.  Hexapod Robot Energy Consumption Dependence on Body Elevation and Step Height , 2014 .

[20]  O. Brüls,et al.  Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach , 2013 .

[21]  Zhiying Wang,et al.  Mobility analysis of the typical gait of a radial symmetrical six-legged robot , 2011 .

[22]  David E. Orin,et al.  Gait planning for energy efficiency in walking machines , 1997, Proceedings of International Conference on Robotics and Automation.

[23]  Fouad Giri,et al.  Dynamic modelling of a four-legged robot , 1996, J. Intell. Robotic Syst..

[24]  K. H. Hunt,et al.  Coefficient of Restitution Interpreted as Damping in Vibroimpact , 1975 .

[25]  Q. Bombled,et al.  Dynamic simulation of six-legged robots with a focus on joint friction , 2012 .

[26]  Pablo González de Santos,et al.  Optimizing Leg Distribution Around the Body in Walking Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[27]  A. Preumont,et al.  Gait analysis and implementation of a six leg walking machine , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[28]  Pablo González de Santos,et al.  Minimizing Energy Consumption in Hexapod Robots , 2009, Adv. Robotics.

[29]  Pablo González de Santos,et al.  Controlling Dynamic Stability and Active Compliance to Improve Quadrupedal Walking , 2005, CLAWAR.

[30]  Hamid M. Lankarani,et al.  Compliant contact force models in multibody dynamics : evolution of the Hertz contact theory , 2012 .

[31]  J. Estremera,et al.  Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots , 2006 .

[32]  Pablo González de Santos,et al.  Analyzing energy-efficient configurations in hexapod robots for demining applications , 2012, Ind. Robot.

[33]  Dilip Kumar Pratihar,et al.  Computer aided modeling and analysis of turning motion of hexapod robot on varying terrains , 2015 .

[34]  Tsukasa Ogasawara,et al.  Slip-adaptive walk of quadruped robot , 2005, Robotics Auton. Syst..