Detecting anomalous spatial interaction patterns by maximizing urban population carrying capacity

[1]  T. Champion Urbanization, Suburbanization, Counterurbanization and Reurbanization , 2001 .

[2]  H. Timmermans Spatial Choice Models , 2001 .

[3]  E. D. Perle,et al.  Accessibility Measures in Spatial Mismatch Models , 2002 .

[4]  Laurence J. C. Ma,et al.  Economic reforms, urban spatial restructuring, and planning in China , 2004 .

[5]  Laurence R. Rilett,et al.  Population Origin-Destination Estimation Using Automatic Vehicle Identification and Volume Data , 2005 .

[6]  David Banister,et al.  Excess Commuting: A Critical Review , 2006 .

[7]  H. Stanley,et al.  Gravity model in the Korean highway , 2007, 0710.1274.

[8]  中華人民共和国国家統計局 中华人民共和国国民经济和社会发展统计公报 = Statistical communique of The People's Republic of China on the national economic and social development , 2008 .

[9]  Chengyang Zhang,et al.  Map-matching for low-sampling-rate GPS trajectories , 2009, GIS.

[10]  Sven Koenig,et al.  BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm , 2008, AAMAS.

[11]  Glencora Borradaile,et al.  Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[12]  Bo Hu,et al.  Exploratory calibration of a spatial interaction model using taxi GPS trajectories , 2012, Comput. Environ. Urban Syst..

[13]  Marta C. González,et al.  A universal model for mobility and migration patterns , 2011, Nature.

[14]  Y. Wei Restructuring for Growth in Urban China: Transitional Institutions, Urban Development, and Spatial Transformation , 2012 .

[15]  Fahui Wang,et al.  Urban land uses and traffic 'source-sink areas': Evidence from GPS-enabled taxi data in Shanghai , 2012 .

[16]  Michael Batty,et al.  Detecting the dynamics of urban structure through spatial network analysis , 2014, Int. J. Geogr. Inf. Sci..

[17]  Yu Liu,et al.  A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint , 2015, PloS one.

[18]  Chaogui Kang,et al.  Social Sensing: A New Approach to Understanding Our Socioeconomic Environments , 2015 .

[19]  Ling Liu,et al.  Road-Network Aware Trajectory Clustering: Integrating Locality, Flow, and Density , 2015, IEEE Transactions on Mobile Computing.

[20]  Hai Huang,et al.  Anomalous behavior detection in single-trajectory data , 2015, Int. J. Geogr. Inf. Sci..

[21]  Jean-Claude Thill,et al.  Combining smart card data and household travel survey to analyze jobs-housing relationships in Beijing , 2013, Comput. Environ. Urban Syst..

[22]  Chuan Ding,et al.  Spatial heterogeneous impact of built environment on household auto ownership levels: evidence from analysis at traffic analysis zone scales , 2016 .

[23]  Shaowen Wang,et al.  Exploring Multi-Scale Spatiotemporal Twitter User Mobility Patterns with a Visual-Analytics Approach , 2016, ISPRS Int. J. Geo Inf..

[24]  Chaogui Kang,et al.  Understanding operation behaviors of taxicabs in cities by matrix factorization , 2016, Comput. Environ. Urban Syst..

[25]  Markus Strohmaier,et al.  Discovering and Characterizing Mobility Patterns in Urban Spaces: A Study of Manhattan Taxi Data , 2016, WWW.

[26]  Jan Ketil Rød,et al.  An attraction-based cellular automaton model for generating spatiotemporal population maps in urban areas , 2016 .

[27]  Rosario N. Mantegna,et al.  Core of communities in bipartite networks , 2017, Physical review. E.

[28]  Ling Yin,et al.  Spatiotemporal model for assessing the stability of urban human convergence and divergence patterns , 2017, Int. J. Geogr. Inf. Sci..

[29]  Jaideep Srivastava,et al.  Effective Urban Structure Inference from Traffic Flow Dynamics , 2017, IEEE Transactions on Big Data.

[30]  Hani S. Mahmassani,et al.  A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin–destination demand networks , 2017 .

[31]  Yatao Zhang,et al.  Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data , 2017, Int. J. Geogr. Inf. Sci..

[32]  Panos M. Pardalos,et al.  Spatial Interaction Models , 2017 .

[33]  Yihong Yuan,et al.  Exploring inter-country connection in mass media: A case study of China , 2017, Comput. Environ. Urban Syst..

[34]  Di Zhu,et al.  The Scale Effect on Spatial Interaction Patterns: An Empirical Study Using Taxi O-D data of Beijing and Shanghai , 2018, IEEE Access.

[35]  Job Displacement and the Duration of Joblessness: The Role of Spatial Mismatch , 2014, Review of Economics and Statistics.

[36]  Jianxi Gao,et al.  A mobility network approach to identify and anticipate large crowd gatherings , 2018, Transportation Research Part B: Methodological.

[37]  Li Li,et al.  An empirical study on travel patterns of internet based ride-sharing , 2018 .

[38]  G. Andersson,et al.  Municipality attraction and commuter mobility in urban Sweden: An analysis based on longitudinal population data , 2018 .

[39]  Xiaofan Wang,et al.  Predicting Human Mobility Fluxes Between Regions with Different Features in Urban , 2018, 2018 37th Chinese Control Conference (CCC).

[40]  Shaowen Wang,et al.  Outlier Detection and Comparison of Origin-Destination Flows Using Data Depth , 2018, GIScience.

[41]  Yan Shi,et al.  Detecting anomalies in spatio-temporal flow data by constructing dynamic neighbourhoods , 2018, Comput. Environ. Urban Syst..

[42]  Feng Xia,et al.  Discovering Transit-Oriented Development Regions of Megacities Using Heterogeneous Urban Data , 2019, IEEE Transactions on Computational Social Systems.

[43]  Sarah Williams,et al.  Ghost cities of China: Identifying urban vacancy through social media data , 2019, Cities.

[44]  Yishao Shi,et al.  Reconsideration of the methodology for estimation of land population carrying capacity in Shanghai metropolis. , 2019, The Science of the total environment.

[45]  Jiangping Zhou,et al.  Day-to-day variation in excess commuting: An exploratory study of Brisbane, Australia , 2019, Journal of Transport Geography.

[46]  Tao Pei,et al.  Detecting arbitrarily shaped clusters in origin-destination flows using ant colony optimization , 2018, Int. J. Geogr. Inf. Sci..

[47]  Babak Mirbaha,et al.  The effects of traffic zoning with regular geometric shapes on the precision of trip production models , 2019, Journal of Transport Geography.

[48]  Liu Yang,et al.  Inferring demographics from human trajectories and geographical context , 2019, Comput. Environ. Urban Syst..

[49]  Ran Tao,et al.  flowAMOEBA: Identifying Regions of Anomalous Spatial Interactions , 2019 .

[50]  Tie-shan Sun,et al.  Employment centers and polycentric spatial development in Chinese cities: A multi-scale analysis , 2020 .

[51]  Jiannan Cai,et al.  Significant spatial co-distribution pattern discovery , 2020, Comput. Environ. Urban Syst..

[52]  Naixia Mou,et al.  Visualizing and exploring POI configurations of urban regions on POI-type semantic space , 2020 .

[53]  Excess commuting and frictions in the labor market , 2020 .

[54]  Weili Zhang,et al.  Spatial patterns and determinant factors of population flow networks in China: Analysis on Tencent Location Big Data , 2020 .

[55]  Min Deng,et al.  Network-constrained bivariate clustering method for detecting urban black holes and volcanoes , 2020, Int. J. Geogr. Inf. Sci..

[56]  Qingyun Du,et al.  Analysing the spatial configuration of urban bus networks based on the geospatial network analysis method , 2020 .

[57]  Chao Wang,et al.  Understanding interurban networks from a multiplexity perspective , 2020, Cities.

[58]  Shashi Shekhar,et al.  Discovering regions of anomalous spatial co-locations , 2020, Int. J. Geogr. Inf. Sci..

[59]  Chenghu Zhou,et al.  L-function of geographical flows , 2020, Int. J. Geogr. Inf. Sci..