Nonlinear phase desynchronization in human electroencephalographic data

Ensembles of coupled nonlinear systems represent natural candidates for the modeling of brain dynamics. The objective of this study is to examine the complex signal produced by coupled chaotic attractors, to discuss their potential relevance to distributed processes in the brain, and to illustrate a method of detecting their contribution to human EEG morphology. Two measures of quantifying the behavior of coupled nonlinear systems are presented: a measure of phase synchrony and a novel measure of intermittent phase desynchronization. These are used to quantify the behavior of numerical examples of coupled chaotic attractors. Experimental evidence of their contribution to the morphology of the human alpha rhythm is then illustrated in a study of EEG recordings from 40 healthy human subjects. Amplitude‐adjusted phase‐randomized surrogate data is used to test the null hypothesis that the observed patterns of phase coherence can be described by purely linear methods. Statistical analysis reveals that this null hypothesis can be robustly rejected in a small number (∼4%) of EEG epochs. These findings are discussed with reference to the adaptive function and complex dynamics of the brain. Hum. Brain Mapping 15:175–198, 2002. © 2002 Wiley‐Liss, Inc.

[1]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[2]  Irwin J. Kopin,et al.  The Biochemical Basis of Neuropharmacology , 1971, The Yale Journal of Biology and Medicine.

[3]  Lila L. Gatlin,et al.  Information theory and the living system , 1972 .

[4]  G Pfurtscheller,et al.  Graphical display and statistical evaluation of event-related desynchronization (ERD). , 1977, Electroencephalography and clinical neurophysiology.

[5]  W. van Winsum,et al.  The functional significance of event-related desynchronization of alpha rhythm in attentional and activating tasks. , 1984, Electroencephalography and clinical neurophysiology.

[6]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[7]  W. van Winsum,et al.  Event-related desynchronization and P300. , 1987, Psychophysiology.

[8]  G Fein,et al.  Common reference coherence data are confounded by power and phase effects. , 1988, Electroencephalography and clinical neurophysiology.

[9]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[10]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[11]  W. Freeman Nonlinear neural dynamics in olfaction as a model for cognition , 1990 .

[12]  Erol Baş,et al.  Chaos in Brain Function , 1990, Springer Berlin Heidelberg.

[13]  D. Ruelle,et al.  The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[15]  Xin Wang,et al.  Period-doublings to chaos in a simple neural network , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[16]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[17]  P. Grassberger,et al.  Symmetry breaking bifurcation for coupled chaotic attractors , 1991 .

[18]  F. Boiten,et al.  Event-related desynchronization: the effects of energetic and computational demands. , 1992, Electroencephalography and clinical neurophysiology.

[19]  W. Pritchard,et al.  Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. , 1992, The International journal of neuroscience.

[20]  A. Fuchs,et al.  A phase transition in human brain and behavior , 1992 .

[21]  Albano,et al.  Filtered noise can mimic low-dimensional chaotic attractors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  C J Stam,et al.  Quantification of Alpha Rhythm Desynchronization Using the Acceleration Spectrum Entropy of the EEG , 1993, Clinical EEG.

[23]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[24]  Theiler,et al.  Generating surrogate data for time series with several simultaneously measured variables. , 1994, Physical review letters.

[25]  Alfonso M Albano,et al.  Phase-randomized surrogates can produce spurious identifications of non-random structure , 1994 .

[26]  David Ruelle,et al.  Deterministic chaos: the science and the fiction , 1995 .

[27]  Carroll,et al.  Desynchronization by periodic orbits. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Karl J. Friston,et al.  Characterising the complexity of neuronal interactions , 1995 .

[29]  Carroll,et al.  Short wavelength bifurcations and size instabilities in coupled oscillator systems. , 1995, Physical review letters.

[30]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  C. J. Stam,et al.  Investigation of nonlinear structure in multichannel EEG , 1995 .

[32]  P Clochon,et al.  A new method for quantifying EEG event-related desynchronization:amplitude envelope analysis. , 1996, Electroencephalography and clinical neurophysiology.

[33]  Francisco J. Varela,et al.  Entropy quantification of human brain spatio-temporal dynamics , 1996 .

[34]  Milan Palus,et al.  Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos , 1996, Biological Cybernetics.

[35]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[36]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[37]  N. Rulkov,et al.  Robustness of Synchronized Chaotic Oscillations , 1997 .

[38]  H Korn,et al.  A nonrandom dynamic component in the synaptic noise of a central neuron. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Yorke,et al.  Differentiable generalized synchronization of chaos , 1997 .

[40]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[41]  Karl J. Friston Transients, Metastability, and Neuronal Dynamics , 1997, NeuroImage.

[42]  W. Klimesch,et al.  Theta synchronization and alpha desynchronization in a memory task. , 1997, Psychophysiology.

[43]  J. Freund,et al.  Entropy Analysis of Noise Contaminated Sequences , 1998 .

[44]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[45]  L. C. Liu,et al.  COOPERATIVE DYNAMICS IN AUDITORY BRAIN RESPONSE , 1998, physics/9804004.

[46]  J. Kurths,et al.  Heartbeat synchronized with ventilation , 1998, Nature.

[47]  L. Pecora Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems , 1998 .

[48]  A R Haig,et al.  EEG alpha phase at stimulus onset significantly affects the amplitude of the P3 ERP component. , 1998, The International journal of neuroscience.

[49]  E. Mosekilde,et al.  TRANSVERSE INSTABILITY AND RIDDLED BASINS IN A SYSTEM OF TWO COUPLED LOGISTIC MAPS , 1998 .

[50]  P. Achermann,et al.  Coherence analysis of the human sleep electroencephalogram , 1998, Neuroscience.

[51]  M. Matias,et al.  Desynchronization Transitions in Rings of Coupled Chaotic Oscillators , 1998 .

[52]  R. Llinás,et al.  Experimentally determined chaotic phase synchronization in a neuronal system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  F. L. D. Silva,et al.  Dynamics of the human alpha rhythm: evidence for non-linearity? , 1999, Clinical Neurophysiology.

[54]  Christoph Braun,et al.  Coherence of gamma-band EEG activity as a basis for associative learning , 1999, Nature.

[55]  R. Tavakol,et al.  Transverse instability for non-normal parameters , 1998, chao-dyn/9802013.

[56]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[57]  Karl J. Friston The labile brain. I. Neuronal transients and nonlinear coupling. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  H. Haken,et al.  Towards a comprehensive theory of brain activity: coupled oscillator systems under external forces , 2000 .

[59]  Thomas Schreiber,et al.  IS NONLINEARITY EVIDENT IN TIME SERIES OF BRAIN ELECTRICAL ACTIVITY , 2000 .

[60]  P. Robinson,et al.  Prediction of electroencephalographic spectra from neurophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Karl J. Friston,et al.  Symmetries and itineracy in nonlinear systems with many degrees of freedom , 2001 .

[62]  Michael Breakspear,et al.  Perception of Odors by a Nonlinear Model of the Olfactory Bulb , 2001, Int. J. Neural Syst..

[63]  P. Nunez,et al.  Spatial‐temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of local networks , 2001, Human brain mapping.

[64]  John R. Terry,et al.  Detection and description of non-linear interdependence in normal multichannel human EEG data , 2002, Clinical Neurophysiology.

[65]  J. J. Wright,et al.  State-changes in the brain viewed as linear steady-states and non-linear transitions between steady-states , 2004, Biological Cybernetics.