A review of small heat pipes for electronics

Heat pipes (HPs) have received considerable attention in recent decades, especially in the field of cooling electronics, which requires the removal of added heat from an area of limited volume to the environment. Small HPs are widely used in electronic applications, which are normally limited by the compact structure and dimensions of the electronic device. Among small HPs, mini/micro HPs and two-phase loops (TPLs) with mini/micro wicks, including loop HPs (LHPs) and capillary pumped loops (CPLs), are preferred for their high efficiency, small dimensions, and compatible process with semiconductor devices. Particularly, TPLs possess all of the main advantages of traditional HPs with the addition of special properties that enable the transfer of heat for distances up to several metres at any orientation in the gravity field. Further, small vapour chambers (VCs), also referred to as flat HPs, are excellent candidates for electronic heat spreaders due to their light weight, geometric flexibility, and extremely high thermal conductivities. Because silicon is widely used in electronics, it is a preferred material for mini/micro HPs along with TPLs. Moreover, polymer-based small HPs are highly attractive for further development as they are inexpensive and easy to fabricate. Because the smaller wicks supply a greater capillary force, nano wicks, such as carbon nanotubes (CNTs), may represent the future of HPs due to their potentially outstanding characteristics. In this work, a review of small HPs, including their design, analysis, and fabrication, is presented.

[1]  Souad Harmand,et al.  3D transient model of vapour chamber: Effect of nanofluids on its performance , 2013 .

[2]  Wei Qiang Liu,et al.  Analysis of the Evaporating Characteristics of the Grooved Micro Heat Pipe with Alkali Metals as Working Fluid , 2012 .

[3]  Yu. F. Maidanik,et al.  Miniature loop heat pipes for electronics cooling , 2003 .

[4]  Yong Li,et al.  Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression , 2012 .

[5]  Cell K. Y. Wong,et al.  Nanowire-based gas sensors , 2013 .

[6]  Ningling Wang,et al.  A novel wick structure of vapor chamber based on the fractal architecture of leaf vein , 2013 .

[7]  J. Thome Boiling in microchannels: a review of experiment and theory , 2004 .

[8]  Roman Ulbrich,et al.  Two-phase gas-liquid flow in rectangular channels , 1984 .

[9]  Zirong Lin,et al.  Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes , 2011 .

[10]  Shwin-Chung Wong,et al.  A novel vapor chamber and its performance , 2010 .

[11]  F. J. Stenger,et al.  Experimental feasibility study of water-filled capillary-pumped heat-transfer loops , 1966 .

[12]  Avram Bar-Cohen,et al.  Thermal management of high heat flux nanoelectronic chips , 2007 .

[13]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[14]  Tsung-Yi Yang,et al.  A novel flat polymer heat pipe with thermal via for cooling electronic devices , 2015 .

[15]  Niel D. Crews,et al.  A hybrid CFD-mathematical model for simulation of a MEMS loop heat pipe for electronics cooling applications , 2005 .

[16]  R. Shah,et al.  Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design , 2000 .

[17]  G. P. Peterson,et al.  Investigation of a Novel Flat Heat Pipe , 2005 .

[18]  Suresh V Garimella,et al.  Design of Integrated Nanostructured Wicks for High-Performance Vapor Chambers , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[19]  J. R. Arias,et al.  Experimental and theoretical study of a vapour chamber based heat spreader for avionics applications , 2012 .

[20]  Sameer Khandekar,et al.  Closed loop pulsating heat pipes: Part A: parametric experimental investigations , 2003 .

[21]  Jung-Chang Wang,et al.  Development of 30 Watt high-power LEDs vapor chamber-based plate , 2010 .

[22]  Raffaele Savino,et al.  Surface tension-driven flow in wickless heat pipes with self-rewetting fluids , 2009 .

[23]  Jackson Braz Marcinichen,et al.  Advances in Electronics Cooling , 2013 .

[24]  Jackson Braz Marcinichen,et al.  Cooling of microprocessors with micro-evaporation: A novel two-phase cooling cycle , 2010 .

[25]  David Trebotich,et al.  Cooling Effect of a MEMS Based Micro Capillary Pumped Loop for Chip-Level Temperature Control , 2000, Micro-Electro-Mechanical Systems (MEMS).

[26]  Huiying Wu,et al.  Silicon-Based Micro Pulsating Heat Pipe for Cooling Electronics , 2011 .

[27]  Lin Lu,et al.  Thermal Performance of Axially Microgrooved Heat Pipe Using Carbon Nanotube Suspensions , 2009 .

[28]  Jung-Yeul Jung,et al.  A capillary-pumped loop (CPL) with microcone-shaped capillary structure for cooling electronic devices , 2008 .

[29]  Mark H. Weichold,et al.  On the Use of Micro Heat Pipes as an Integral Part of Semiconductor Devices , 1992 .

[30]  B. R. Babin,et al.  Steady-State Modeling and Testing of a Micro Heat Pipe , 1990 .

[31]  Huiying Wu,et al.  Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes , 2012 .

[32]  L. L. Vasiliev,et al.  Micro and miniature heat pipes – Electronic component coolers , 2008 .

[33]  Shung-Wen Kang,et al.  Metallic micro heat pipe heat spreader fabrication , 2004 .

[34]  Yu.F. Maydanik,et al.  Loop heat pipes , 2005 .

[35]  Valeri V. Vlassov,et al.  Experimental and theoretical investigation of a capillary pumped loop with a porous element in the condenser , 1998 .

[36]  Marcia B. H. Mantelli,et al.  Effective thermal conductivity of sintered porous media: Model and experimental validation , 2013 .

[37]  Victor M. Bright,et al.  Flat flexible polymer heat pipes , 2012 .

[38]  Xi Bing Li,et al.  Analysis of Structural Parameters of Grooved-Wicksin Micro Heat Pipes Based on Capillary Limits , 2012 .

[39]  Suresh V. Garimella,et al.  Carbon Nanotube Coatings for Enhanced Capillary-Fed Boiling from Porous Microstructures , 2012 .

[40]  Ronggui Yang,et al.  The Development of Polymer-Based Flat Heat Pipes , 2011, Journal of Microelectromechanical Systems.

[41]  T. P. Cotter Principles and prospects for micro heat pipes , 1984 .

[42]  Fernando H. Milanez,et al.  Powder Geometry Based Models for Sintered Media Porosity and Effective Thermal Conductivity , 2014 .

[43]  B. D. Todd,et al.  How fast does water flow in carbon nanotubes? , 2013, The Journal of chemical physics.

[44]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[45]  Mehmet Arik,et al.  Direct Liquid Cooling of High Flux Micro and Nano Electronic Components , 2006, Proceedings of the IEEE.

[46]  Srinivas Garimella,et al.  Characterization of two-phase flow patterns in small diameter round and rectangular tubes , 1999 .

[47]  Frank M. Gerner,et al.  MEMS loop heat pipe based on coherent porous silicon technology , 2002 .

[48]  Yung-Cheng Lee,et al.  Micromembrane-enhanced capillary evaporation , 2013 .

[49]  U. Ghoshal,et al.  Cooling of high-power-density microdevices using liquid metal coolants , 2004 .

[50]  Ben Richard Hughes,et al.  A review of heat pipe systems for heat recovery and renewable energy applications , 2012 .

[51]  Sony Joseph,et al.  Why are carbon nanotubes fast transporters of water? , 2008, Nano letters.

[52]  Manfred Groll,et al.  Porous medium model for two-phase flow in mini channels with applications to micro heat pipes , 1994 .

[53]  Russell B. Schweickart,et al.  Flexible heat pipes for CCD cooling on the Advanced Camera for Surveys , 1998, Astronomical Telescopes and Instrumentation.

[54]  Manfred Groll,et al.  Steady-State and Transient Performance of a Miniature Loop Heat Pipe , 2006 .

[55]  Amir Faghri,et al.  Heat Pipe Science And Technology , 1995 .

[56]  Monique Lallemand,et al.  Experimental study on silicon micro-heat pipe arrays , 2004 .

[57]  G. P. Peterson,et al.  An Introduction to Heat Pipes: Modeling, Testing, and Applications , 1994 .

[58]  Paisarn Naphon,et al.  Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures , 2009 .

[59]  Brent A. Cullimore,et al.  CPL and LHP Technologies: What are the Differences, What are the Similarities? , 1998 .

[60]  Zhen-hua Liu,et al.  Heat transfer performance of a horizontal micro-grooved heat pipe using CuO nanofluid , 2008 .

[61]  Roshan Jeet Jee Jachuck,et al.  Integrated thermal management techniques for high power electronic devices , 2004 .

[62]  G. Peterson,et al.  Experimental and analytical investigation of a capillary pumped loop , 1994 .

[63]  W. Srimuang,et al.  A review of the applications of heat pipe heat exchangers for heat recovery , 2012 .

[64]  T. Karayiannis,et al.  The effect of tube diameter on vertical two-phase flow regimes in small tubes , 2006 .

[65]  Nan Sheng,et al.  Water transport through carbon nanotubes with the radial breathing mode. , 2013, Physical review letters.

[66]  Jong Hwa Choi,et al.  Thermal analysis of LED array system with heat pipe , 2007 .

[67]  Jyh-Chen Chen,et al.  The heat dissipation performance of LED applied a MHP , 2005, SPIE Optics + Photonics.

[68]  P. Naphon,et al.  Application of two-phase vapor chamber technique for hard disk drive cooling of PCs , 2013 .

[69]  G. P. Peterson,et al.  Capillary Evaporation in Microchanneled Polymer Films , 2002 .

[70]  Pasqualina M. Sarro,et al.  MEMS silicon-based micro-evaporator , 2011 .

[71]  Guoqi Zhang,et al.  More than Moore: Creating High Value Micro/Nanoelectronics Systems , 2009 .

[72]  G. P. Peterson,et al.  A review and comparative study of the investigations on micro heat pipes , 2007 .

[73]  J. Tucker,et al.  A silicon-carbide micro-capillary pumped loop for cooling high power devices , 2003, Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003..

[74]  N. D. de Rooij,et al.  Design and fabrication of nanofluidic devices by surface micromachining , 2006, Nanotechnology.

[75]  Suresh V. Garimella,et al.  A microscale model for thin-film evaporation in capillary wick structures , 2011 .

[76]  S. H. Noie-Baghban,et al.  Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals , 2000 .

[77]  G. P. Peterson,et al.  Analysis of Wire-Bonded Micro Heat Pipe Arrays , 2002 .

[78]  Stéphane Van Oost,et al.  Secondary wick operation principle and performance mapping in LHP and FLHP evaporators , 2002 .

[79]  Allan D. Kraus,et al.  Thermal Analysis and Control of Electronic Equipment , 1983 .

[80]  M. Lallemand,et al.  Effect of interfacial phenomena on evaporative heat transfer in micro heat pipes 1 Based on a paper , 2000 .

[81]  Pradip Dutta,et al.  Loop Heat Pipes: A Review of Fundamentals, Operation,and Design , 2012 .

[82]  Pradip Dutta,et al.  Theoretical Studies of Hard Filling in Loop Heat Pipes , 2010 .

[83]  G. P. Peterson Modeling, Fabrication, and Testing of Micro Heat Pipes: An Update , 1996 .

[84]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005 .

[85]  Jocelyn Bonjour,et al.  Parametric analysis of loop heat pipe operation: a literature review , 2007 .

[86]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[87]  Shung-Wen Kang,et al.  Fabrication and test of radial grooved micro heat pipes , 2002 .

[88]  Paisarn Naphon,et al.  Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency , 2008 .

[89]  N. Quirke,et al.  nnano.2006.175 Review.indd , 2007 .

[90]  Yew Mun Hung,et al.  Thermal Analysis of a Water-Filled Micro Heat Pipe With Phase-Change Interfacial Resistance , 2012 .

[91]  Satish G. Kandlikar,et al.  Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer during Boiling in Minichannel Flow Passages of Compact Evaporators , 2002 .

[92]  A. E. Bergles,et al.  On the Nature of Critical Heat Flux in Microchannels , 2003 .

[93]  Marcia B. H. Mantelli,et al.  Theoretical thermal study of wire-plate mini heat pipes , 2015 .

[94]  Jianjia Wang,et al.  Capillary Limit of Micro Heat Pipe with Compound Structure of a Sintered Wick on Trapezium-grooved Substrate , 2012 .

[95]  J. H. Kim,et al.  Evaporative spray cooling of plain and microporous coated surfaces , 2004 .

[96]  P. Ing,et al.  SS-1 supercomputer cooling system , 1993, Proceedings of IEEE 43rd Electronic Components and Technology Conference (ECTC '93).

[97]  Frank M. Gerner,et al.  A MEMS bubble pump for an electronic cooling device , 2010 .

[98]  Po-Ya Abel Chuang,et al.  AN IMPROVED STEADY-STATE MODEL OF LOOP HEAT PIPES BASED ON EXPERIMENTAL AND THEORETICAL ANALYSES , 2003 .

[99]  Sushil H. Bhavnani,et al.  Thermal Challenges in Next-Generation Electronic Systems , 2008 .

[100]  C. T. Nguyen,et al.  Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system , 2007 .

[101]  Steven M. George,et al.  Capillary evaporation on micromembrane-enhanced microchannel wicks with atomic layer deposited silica , 2013 .

[102]  Xingxing Zhang,et al.  Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system , 2013 .

[103]  Marcia B. H. Mantelli,et al.  Investigation of a wire plate micro heat pipe array , 2004 .

[104]  Qian Wang,et al.  Experimental Investigation of Silicon-Based Micro-Pulsating Heat Pipe for Cooling Electronics , 2012 .

[105]  Guiping Lin,et al.  Mathematical modeling of steady-state operation of a loop heat pipe , 2009 .

[106]  R. Singh,et al.  Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU , 2007, IEEE Transactions on Components and Packaging Technologies.

[107]  Suresh V. Garimella,et al.  Analysis of the Wicking and Thin-Film Evaporation Characteristics of Microstructures , 2009 .

[108]  Monique Lallemand,et al.  Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics , 2003 .

[109]  Zhen-Hua Liu,et al.  Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon , 2010 .

[110]  G. Peterson,et al.  Overview of Micro Heat Pipe Research and Development , 1992 .

[111]  Jentung Ku,et al.  Operating Characteristics of Loop Heat Pipes , 1999 .

[112]  Marten Terpstra,et al.  Application of Heat Pipes, Heat Pipe Equipped Heat Exchangers , 1987 .

[113]  Jentung Ku,et al.  Heat and Mass Transfer in Loop Heat Pipes , 2003 .

[114]  A. Faghri,et al.  Thermal Analysis of a Micro Heat Pipe , 1994 .

[115]  Tzong-Shyng Leu,et al.  Micro capillary pumped loop system for a cooling high power device , 2008 .

[116]  J. M. Ha,et al.  The Heat Transport Capacity of Micro Heat Pipes , 1998 .

[117]  G. Peterson,et al.  Steady-State Investigation of Vapor Deposited Micro Heat Pipe Arrays , 1995 .

[118]  G. P. Peterson,et al.  Optimization of Micro Heat Pipe Radiators in a Radiation Environment , 2002 .

[119]  Shyy Woei Chang,et al.  Thermal performance of thin loop-type vapor chamber , 2015 .

[120]  J. M. Ha,et al.  Capillary Performance of Evaporating Flow in Micro Grooves: An Analytical Approach for Very Small Tilt Angles , 1998 .

[121]  Jonathan V Sweedler,et al.  Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. , 2006, Lab on a chip.

[122]  Masataka Mochizuki,et al.  Numerical analysis and experimental verification on thermal fluid phenomena in a vapor chamber , 2006 .

[123]  Y. Maydanik,et al.  Miniature loop heat pipes - a promising means for cooling electronics , 2005, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[124]  Mitchel J. Doktycz,et al.  Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures , 2003 .

[125]  Yew Mun Hung,et al.  Effects of geometric design on thermal performance of star-groove micro-heat pipes , 2011 .

[126]  P. Phelan An introduction to heat pipes , 1996 .

[127]  Mark H. Weichold,et al.  Fabrication of vapor-deposited micro heat pipe arrays as an integral part of semiconductor devices , 1995 .

[128]  Qingjun Cai,et al.  Design, development and tests of high-performance silicon vapor chamber , 2012 .

[129]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[130]  John R. Thome,et al.  A theoretical model for the prediction of the critical heat flux in heated microchannels , 2008 .

[131]  Manfred Groll,et al.  Understanding operational regimes of closed loop pulsating heat pipes: an experimental study , 2003 .

[132]  Albert P. Pisano,et al.  MLHP: A High Heat Flux Localized Cooling Technology for Electronic Substrates , 2008 .

[133]  I. Mudawar,et al.  Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels , 2007 .

[134]  Jinliang Xu,et al.  A vapor chamber using extended condenser concept for ultra-high heat flux and large heater area , 2012 .

[135]  Haim H. Bau,et al.  Fabrication of nanofluidic devices and the study of fluid transport through them , 2005, SPIE Optics East.

[136]  Somchai Wongwises,et al.  Heat transfer performance of screen mesh wick heat pipes using silver-water nanofluid , 2013 .

[137]  A. B. Duncan,et al.  Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers , 1993 .

[138]  D. Liepmann,et al.  Performance of a MEMS based micro capillary pumped loop for chip-level temperature control , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[139]  G. Peterson,et al.  Temperature Response of Heat Transport in a Micro Heat Pipe , 1999 .

[140]  Paul Lybaert,et al.  Experimental and numerical analysis of the transient response of a miniature heat pipe , 2005 .

[141]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[142]  Meysam Rahmat,et al.  Two-phase simulations of micro heat pipes , 2010 .

[143]  Youn Tae Kim,et al.  Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon , 2004, Microelectron. Reliab..