Biomechanical analysis of 4 types of short dental implants in a resorbed mandible

[1]  T. Kirita,et al.  Micromotion analysis of different implant configuration, bone density, and crestal cortical bone thickness in immediately loaded mandibular full‐arch implant restorations: A nonlinear finite element study , 2018, Clinical implant dentistry and related research.

[2]  Sujung Park,et al.  Influence of the connection design and titanium grades of the implant complex on resistance under static loading , 2016, The journal of advanced prosthodontics.

[3]  Yoon-Hyuk Huh,et al.  A two-short-implant-supported molar restoration in atrophic posterior maxilla: A finite element analysis , 2016, The journal of advanced prosthodontics.

[4]  E. Pellizzer,et al.  Finite element analysis on influence of implant surface treatments, connection and bone types. , 2016, Materials science & engineering. C, Materials for biological applications.

[5]  D. Kemmoku,et al.  Three-Dimensional Finite Element Analysis of the Biomechanical Behaviors of Implants with Different Connections, Lengths, and Diameters Placed in the Maxillary Anterior Region. , 2016, The International journal of oral & maxillofacial implants.

[6]  Joanna B. Tyrovola,et al.  The “Mechanostat Theory” of Frost and the OPG/RANKL/RANK System , 2015, Journal of cellular biochemistry.

[7]  I. Rocchietta,et al.  Short implants compared to implants in vertically augmented bone: a systematic review. , 2015, Clinical oral implants research.

[8]  F. Geramipanah,et al.  Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis. , 2015, The Journal of prosthetic dentistry.

[9]  R. Jung,et al.  EAO Supplement Working Group 4 - EAO CC 2015 Short implants versus sinus lifting with longer implants to restore the posterior maxilla: a systematic review. , 2015, Clinical oral implants research.

[10]  Dimitrios K. Fytanidis,et al.  Influence of Alveolar Bone Loss and Different Alloys on the Biomechanical Behavior of Internal-and External-Connection Implants: A Three-Dimensional Finite Element Analysis. , 2015, The International journal of oral & maxillofacial implants.

[11]  M. Bottino,et al.  Stress distribution around osseointegrated implants with different internal-cone connections: photoelastic and finite element analysis. , 2015, The Journal of oral implantology.

[12]  P. Noritomi,et al.  Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test. , 2015, Journal of biomechanics.

[13]  Jung-Bo Huh,et al.  Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems , 2014, The journal of advanced prosthodontics.

[14]  S. Taschieri,et al.  Influence of implant/abutment connection on stress distribution to implant-surrounding bone: a finite element analysis. , 2014, Journal of prosthodontics : official journal of the American College of Prosthodontists.

[15]  A. Catena,et al.  Influence of crown/implant ratio on marginal bone loss: a systematic review. , 2014, Journal of periodontology.

[16]  G. Orive,et al.  Implant survival and crestal bone loss around extra-short implants supporting a fixed denture: the effect of crown height space, crown-to-implant ratio, and offset placement of the prosthesis. , 2014, The International journal of oral & maxillofacial implants.

[17]  Francisco Faoro,et al.  Implants with original and non-original abutment connections. , 2014, Clinical implant dentistry and related research.

[18]  D. Consonni,et al.  Influence of crown-implant ratio on implant success rates and crestal bone levels: a 36-month follow-up prospective study. , 2014, Clinical oral implants research.

[19]  E. Pellizzer,et al.  Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis. , 2014, Journal of periodontology.

[20]  A. Wennerberg,et al.  Vertical fracture and marginal bone loss of internal-connection implants: a finite element analysis. , 2013, The International journal of oral & maxillofacial implants.

[21]  Antonio Barone,et al.  An Evaluation of New Designs in Implant-Abutment Connections: A Finite Element Method Assessment , 2013, Implant dentistry.

[22]  V. Barão,et al.  Comparison of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible--a computed tomography-based three-dimensional finite element analysis. , 2013, Journal of biomechanics.

[23]  Gianpaolo Sannino,et al.  Mechanical evaluation of an implant-abutment self-locking taper connection: finite element analysis and experimental tests. , 2013, The International journal of oral & maxillofacial implants.

[24]  Jin-Woo Park,et al.  Influence of crown-to-implant ratio on periimplant marginal bone loss in the posterior region: a five-year retrospective study , 2012, Journal of periodontal & implant science.

[25]  Ali Balik,et al.  Effects of different abutment connection designs on the stress distribution around five different implants: a 3-dimensional finite element analysis. , 2012, The Journal of oral implantology.

[26]  I. Naert,et al.  Occlusal overload and bone/implant loss. , 2012, Clinical oral implants research.

[27]  Seonghun Park,et al.  Stress distribution on scalloped implants with different microthread and connection configurations using three-dimensional finite element analysis. , 2012, The International journal of oral & maxillofacial implants.

[28]  D. Papadogiannis,et al.  Dynamic and static mechanical analysis of resin luting cements. , 2012, Journal of the mechanical behavior of biomedical materials.

[29]  Matthias Karl,et al.  Digitizing implant position locators on master casts: comparison of a noncontact scanner and a contact-probe scanner. , 2012, The International journal of oral & maxillofacial implants.

[30]  J. Vander Sloten,et al.  Influence of implant design on the biomechanical environment of immediately placed implants: computed tomography-based nonlinear three-dimensional finite element analysis. , 2011, The International journal of oral & maxillofacial implants.

[31]  J. Sloten,et al.  Influence of implant connection type on the biomechanical environment of immediately placed implants - CT-based nonlinear, three-dimensional finite element analysis. , 2009, Clinical implant dentistry and related research.

[32]  M. Fava,et al.  Psychic and somatic anxiety symptoms as predictors of response to fluoxetine in major depressive disorder , 2008, Psychiatry Research.

[33]  T. Guda,et al.  Probabilistic analysis of preload in the abutment screw of a dental implant complex. , 2008, The Journal of prosthetic dentistry.

[34]  J. Bernard,et al.  A 10-year prospective study of ITI dental implants placed in the posterior region. II: Influence of the crown-to-implant ratio and different prosthetic treatment modalities on crestal bone loss. , 2007, Clinical oral implants research.

[35]  J. Schulte,et al.  Crown-to-implant ratios of single tooth implant-supported restorations. , 2007, The Journal of prosthetic dentistry.

[36]  F. Isidor,et al.  Influence of forces on peri-implant bone. , 2006, Clinical oral implants research.

[37]  Georges Tawil,et al.  Influence of prosthetic parameters on the survival and complication rates of short implants. , 2006, The International journal of oral & maxillofacial implants.

[38]  T. Łodygowski,et al.  The Screw Loosening and Fatigue Analyses of Three Dimensional Dental Implant Model , 2006 .

[39]  M. Sevimay,et al.  Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. , 2005, The Journal of prosthetic dentistry.

[40]  Sarandeep S. Huja,et al.  Bone modeling: biomechanics, molecular mechanisms, and clinical perspectives , 2004 .

[41]  P. Pröschel,et al.  In vivo forces on implants influenced by occlusal scheme and food consistency. , 2003, The International journal of prosthodontics.

[42]  P. Glantz,et al.  Biomechanical aspects of prosthetic implant-borne reconstructions. , 1998, Periodontology 2000.

[43]  Mitsuo Niinomi,et al.  Mechanical properties of biomedical titanium alloys , 1998 .

[44]  A. Sertgöz Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. , 1997, The International journal of prosthodontics.

[45]  H Vaillancourt,et al.  Finite element analysis of crestal bone loss around porous-coated dental implants. , 1995, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[46]  B Rangert,et al.  Bending overload and implant fracture: a retrospective clinical analysis. , 1995, The International journal of oral & maxillofacial implants.

[47]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[48]  W C Hayes,et al.  Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. , 1994, Journal of biomechanics.

[49]  S. Aquilino,et al.  Cantilever and implant biomechanics: a review of the literature, Part 2. , 1994, Journal of prosthodontics : official journal of the American College of Prosthodontists.

[50]  S. Aquilino,et al.  Cantilever and implant biomechanics: a review of the literature. Part 1. , 1994, Journal of prosthodontics : official journal of the American College of Prosthodontists.

[51]  Daniel E. Jacome, MD Bruxism , 1990, Neurology.

[52]  R DeLong,et al.  Development of an Artificial Oral Environment for the Testing of Dental Restoratives: Bi-axial Force and Movement Control , 1983, Journal of dental research.