Dispersion energy from density-fitted density susceptibilities of singles and doubles coupled cluster theory.

A new method of calculation of the second-order dispersion energy is proposed. It is based on the Longuet-Higgins formula [Faraday Discuss. Chem. Soc. 40, 7 (1965)], which describes the dispersion interaction in terms of frequency-dependent density susceptibilities of monomers. In this study, the density susceptibilities are obtained from the coupled cluster theory at the singles and doubles level. Density fitting is applied in order to reduce the computational effort for the evaluation of density susceptibilities. It is shown that density fitting improves the scaling of the computational resources with molecular size by one order of magnitude without affecting the accuracy of the resulting dispersion energy. Numerical results are presented for several van der Waals molecules to illustrate the performance of the new approach.

[1]  A. Stone,et al.  AB-initio prediction of properties of carbon dioxide, ammonia, and carbon dioxide...ammonia , 1985 .

[2]  Tatiana Korona,et al.  Time-independent coupled cluster theory of the polarization propagator. Implementation and application of the singles and doubles model to dynamic polarizabilities and van der Waals constants† , 2006 .

[3]  P. Wormer,et al.  The importance of high-order correlation effects for the CO–CO interaction potential , 1999 .

[4]  Jens Oddershede,et al.  Polarization Propagator Calculations , 1978 .

[5]  P. Jeffrey Hay,et al.  Gaussian Basis Sets for Molecular Calculations , 1977 .

[6]  Robert Moszynski,et al.  Time-Independent Coupled-Cluster Theory of the Polarization Propagator , 2005 .

[7]  S. Grimme,et al.  Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. , 2007, Physical chemistry chemical physics : PCCP.

[8]  Hans Peter Lüthi,et al.  Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model , 2001 .

[9]  Frederick R. Manby,et al.  Density fitting in second-order linear-r12 Møller–Plesset perturbation theory , 2003 .

[10]  S. Ten-no,et al.  Three-center expansion of electron repulsion integrals with linear combination of atomic electron distributions , 1995 .

[11]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[12]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[13]  K. Szalewicz,et al.  Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets , 1997 .

[14]  R. Podeszwa,et al.  Density-Fitting Method in Symmetry-Adapted Perturbation Theory Based on Kohn-Sham Description of Monomers , 2006, 2006 HPCMP Users Group Conference (HPCMP-UGC'06).

[15]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[16]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[17]  J. Hirschfelder Perturbation theory for exchange forces, II , 1967 .

[18]  T. Korona On the role of higher-order correlation effects on the induction interactions between closed-shell molecules. , 2007, Physical chemistry chemical physics : PCCP.

[19]  Tatiana Korona,et al.  Transition strengths and first-order properties of excited states from local coupled cluster CC2 response theory with density fitting. , 2007, The Journal of chemical physics.

[20]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[21]  Tatiana Korona,et al.  Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density functional calculations? , 1999 .

[22]  Rick A. Kendall,et al.  The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development , 1997 .

[23]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[24]  Frederick R. Manby,et al.  Fast Hartree–Fock theory using local density fitting approximations , 2004 .

[25]  H. Koch,et al.  Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties , 1998 .

[26]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[27]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[28]  Jun Deng,et al.  Empirical Correction to Molecular Interaction Energies in Density Functional Theory (DFT) for Methane Hydrate Simulation. , 2007, Journal of chemical theory and computation.

[29]  Betsy M. Rice,et al.  Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory , 1999 .

[30]  B. Jeziorski,et al.  Dispersion interaction of high-spin open-shell complexes in the random phase approximation , 2003 .

[31]  Tatiana Korona,et al.  Local CC2 electronic excitation energies for large molecules with density fitting. , 2006, The Journal of chemical physics.

[32]  J. Alonso,et al.  Long-Range van der Waals Interactions in Density Functional Theory , 2007 .

[33]  Christof Hättig,et al.  Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr , 2005 .

[34]  A. van der Avoird,et al.  Symmetry‐adapted perturbation theory of nonadditive three‐body interactions in van der Waals molecules. I. General theory , 1995 .

[35]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[36]  Tatiana Korona,et al.  One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory. , 2006, The Journal of chemical physics.

[37]  Stanisl,et al.  Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .

[38]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[39]  F. Manby,et al.  Explicitly correlated second-order perturbation theory using density fitting and local approximations. , 2006, The Journal of chemical physics.

[40]  David E. Bernholdt,et al.  Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method , 1998 .

[41]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[42]  K. Szalewicz,et al.  Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .

[43]  Christof Hättig,et al.  Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation , 2003 .

[44]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  K. Szalewicz,et al.  On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies , 1995 .

[47]  R. Mcweeny,et al.  Time-dependent Hartree-Fock calculations of dispersion energy , 1985 .

[48]  J. Paldus,et al.  Clifford algebra and unitary group formulations of the many-electron problem , 1988 .

[49]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[50]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[51]  Bernd Hartke,et al.  Global and local optimization of auxiliary basis sets for RI-MP2 calculations , 2004 .

[52]  S. Chu,et al.  Sensitive detection of cold cesium molecules formed on Feshbach resonances. , 2002, Physical review letters.

[53]  G. Scuseria,et al.  An ab Initio Study of Solid Nitromethane, HMX, RDX, and CL20: Successes and Failures of DFT , 2004 .

[54]  Sławomir M Cybulski,et al.  Critical examination of the supermolecule density functional theory calculations of intermolecular interactions. , 2005, The Journal of chemical physics.

[55]  Krzysztof Szalewicz,et al.  Efficient calculation of coupled Kohn-Sham dynamic susceptibility functions and dispersion energies with density fitting , 2005 .

[56]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[57]  Krzysztof Szalewicz,et al.  Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. , 2005, The Journal of chemical physics.

[58]  Georg Jansen,et al.  Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory , 2002 .

[59]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[60]  Christof Hättig,et al.  Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation , 2003 .

[61]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[62]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[63]  Pavel Hobza,et al.  On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. , 2005, The Journal of chemical physics.

[64]  K. Szalewicz,et al.  Møller–Plesset expansion of the dispersion energy in the ring approximation , 1993 .

[65]  M. Szczęśniak,et al.  On the connection between the supermolecular Møller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces , 1988 .

[66]  Georg Jansen,et al.  Intermolecular dispersion energies from time-dependent density functional theory , 2003 .

[67]  Robert Moszynski,et al.  Explicitly connected expansion for the average value of an observable in the coupled-cluster theory , 1993 .

[68]  Alistair P. Rendell,et al.  COUPLED-CLUSTER THEORY EMPLOYING APPROXIMATE INTEGRALS : AN APPROACH TO AVOID THE INPUT/OUTPUT AND STORAGE BOTTLENECKS , 1994 .

[69]  Frederick R Manby,et al.  Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. , 2004, The Journal of chemical physics.

[70]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[71]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[72]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[73]  H. C. Longuet-Higgins Spiers Memorial Lecture. Intermolecular forces , 1965 .

[74]  Evert Jan Baerends,et al.  Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region , 2001 .

[75]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[76]  Christof Hättig,et al.  Transition moments and excited-state first-order properties in the coupled-cluster model CC2 using the resolution-of-the-identity approximation , 2002 .

[77]  Thomas Bondo Pedersen,et al.  Coupled cluster response functions revisited , 1997 .