Pathophysiological basis of translational stroke research.

The high incidence and the devastating consequences of stroke call for efficient therapies but despite extensive experimental evidence of neuroprotective improvements, most clinical treatments have failed. The poor translational success is attributed to the inappropriate selection of clinically irrelevant animal models, the inappropriate focus on clinically irrelevant injury pathways and the inappropriate estimation of the length of therapeutic windows. To substantiate this conclusion, the pathophysiology of experimental stroke is reviewed. Particular emphasis is placed on the importance of collateral pathways, the penumbra concept and the viability thresholds of ischaemia, the haemodynamic and molecular mechanisms of injury evolution and the effect of secondary complications, notably inflammation and brain oedema. The comparison of permanent and transient focal ischaemia, on the one hand, and between mechanical and thrombolytic reperfusion, on the other, reveal basic differences in the mechanisms and dynamics of injury evolution which are of paramount importance for the proper targeting and time window of therapeutic interventions. These differences must be considered for adequate modelling of preclinical stroke studies to avoid unsuccessful translation of experimental data to the clinical setting.

[1]  P. Hurn,et al.  Experimental Stroke Induces Massive, Rapid Activation of the Peripheral Immune System , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  P. Akins,et al.  Neuronal apoptosis: current understanding of molecular mechanisms and potential role in ischemic brain injury. , 1995, Journal of neurotrauma.

[3]  Myron D. Ginsberg,et al.  Neuroprotection for ischemic stroke: Past, present and future , 2008, Neuropharmacology.

[4]  B. Siesjo Calcium, Excitotoxins, and Brain Damage , 1990 .

[5]  R. Morawetz,et al.  Regional cerebral blood flow thresholds during cerebral ischemia. , 1979, Federation proceedings.

[6]  K. Hossmann,et al.  Cortical Impedance and Extracellular Volume Changes following Middle Cerebral Artery Occlusion in Cats , 1982, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  F J Schuier,et al.  Experimental Brain Infarcts in Cats: II. Ischemic Brain Edema , 1980, Stroke.

[8]  P. Chan,et al.  Role of the p38 Mitogen-Activated Protein Kinase/Cytosolic Phospholipase A2 Signaling Pathway in Blood—Brain Barrier Disruption after Focal Cerebral Ischemia and Reperfusion , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  S. Warach,et al.  Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion–diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study , 2009, The Lancet Neurology.

[10]  G. Mies,et al.  Ischemic Thresholds of Cerebral Protein Synthesis and Energy State following Middle Cerebral Artery Occlusion in Rat , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  Á. Chamorro,et al.  Signalling pathways mediating inflammatory responses in brain ischaemia. , 2006, Biochemical Society transactions.

[12]  Y. Ni,et al.  Delayed perfusion phenomenon in a rat stroke model at 1.5 T MR: an imaging sign parallel to spontaneous reperfusion and ischemic penumbra? , 2007, European journal of radiology.

[13]  M. Hoehn,et al.  Penumbral tissue alkalosis in focal cerebral ischemia: Relationship to energy metabolism, blood flow, and steady potential , 2000, Annals of neurology.

[14]  David E. Levy,et al.  Delayed postischemic hypoperfusion , 1979, Neurology.

[15]  N. Rothwell,et al.  Interleukin 1 in the brain: biology, pathology and therapeutic target , 2000, Trends in Neurosciences.

[16]  K. Hossmann,et al.  Experimental Brain Infarcts in Cats: I. Pathophysiological Observations , 1980, Stroke.

[17]  G. Donnan,et al.  1,026 Experimental treatments in acute stroke , 2006, Annals of neurology.

[18]  U. Dirnagl,et al.  Endogenous neuroprotection: Mitochondria as gateways to cerebral preconditioning? , 2008, Neuropharmacology.

[19]  Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen , 1950 .

[20]  T. Nowak,et al.  Temporal Thresholds for Infarction and Hypothermic Protection in Long-Evans Rats: Factors Affecting Apparent ‘Reperfusion Injury’ After Transient Focal Ischemia , 2008, Stroke.

[21]  Marc Fisher,et al.  Update of the Stroke Therapy Academic Industry Roundtable Preclinical Recommendations , 2009, Stroke.

[22]  P. Garnier,et al.  Acidosis Causes Endoplasmic Reticulum Stress and Caspase-12-Mediated Astrocyte Death , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  Daniel P Bradley,et al.  Physiological studies of cortical spreading depression. , 2007, Biological reviews of the Cambridge Philosophical Society.

[24]  U. Heinemann,et al.  Nitric Oxide Modulates Spreading Depolarization Threshold in the Human and Rodent Cortex , 2008, Stroke.

[25]  W. Heiss,et al.  Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. , 1976, Archives of neurology.

[26]  J. Henley,et al.  Increased protein SUMOylation following focal cerebral ischemia , 2008, Neuropharmacology.

[27]  W. Paschen,et al.  Threshold relationship between cerebral blood flow, glucose utilization, and energy metabolites during development of stroke in gerbils , 1992, Experimental Neurology.

[28]  Mary P. Stenzel-Poore,et al.  Mechanisms of ischemic brain damage , 2008, Neuropharmacology.

[29]  K. Nozaki,et al.  Tissue Inhibitor of Metalloproteinases Protect Blood—Brain Barrier Disruption in Focal Cerebral Ischemia , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  K. Hossmann Disturbances of cerebral protein synthesis and ischemic cell death. , 1993, Progress in brain research.

[31]  Sensi Sl,et al.  Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. , 2004 .

[32]  E. Kılıç,et al.  Effects of Recombinant Tissue Plasminogen Activator After Intraluminal Thread Occlusion in Mice: Role of Hemodynamic Alterations , 2001, Stroke.

[33]  D. Liebeskind Collateral circulation. , 2003, Stroke.

[34]  J. Macdonald,et al.  Paradox of Ca2+ signaling, cell death and stroke , 2006, Trends in Neurosciences.

[35]  S. Beneke Poly(ADP-ribose) polymerase activity in different pathologies – The link to inflammation and infarction , 2008, Experimental Gerontology.

[36]  K. Hossmann,et al.  Periinfarct depolarizations. , 1996, Cerebrovascular and brain metabolism reviews.

[37]  B. Siesjö,et al.  Thresholds in cerebral ischemia - the ischemic penumbra. , 1981, Stroke.

[38]  C. Graffagnino,et al.  Nonocclusion and spontaneous recanalization rates in acute ischemic stroke: a review of cerebral angiography studies. , 2002, Archives of neurology.

[39]  T. Neumann-Haefelin,et al.  NADPH Oxidase Plays a Central Role in Blood-Brain Barrier Damage in Experimental Stroke , 2007, Stroke.

[40]  G. Dai,et al.  In vivo quantification of transvascular water exchange during the acute phase of permanent stroke , 2008, Magnetic resonance in medicine.

[41]  G. Moneta,et al.  Thrombolysis with Alteplase 3 to 4.5 Hours after Acute Ischemic Stroke , 2009 .

[42]  P. Chan,et al.  Role of oxidants in ischemic brain damage. , 1996, Stroke.

[43]  R. Simon,et al.  Acidotoxicity in brain ischaemia. , 2006, Biochemical Society transactions.

[44]  K. Hossmann Pathophysiology and Therapy of Experimental Stroke , 2006, Cellular and Molecular Neurobiology.

[45]  B E Tomlinson,et al.  Flow and neuronal density in tissue surrounding chronic infarction. , 1984, Stroke.

[46]  L. Symon,et al.  Extracellular pH, Potassium, and Calcium Activities in Progressive Ischaemia of Rat Cortex , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[47]  H. Naritomi,et al.  Flow Thresholds for Cerebral Energy Disturbance and Na+ Pump Failure as Studied by in vivo 31P and 23Na Nuclear Magnetic Resonance Spectroscopy , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[48]  M Hoehn-Berlage,et al.  Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction. , 1995, Magnetic resonance imaging.

[49]  D. Choi Excitotoxic cell death. , 1992, Journal of neurobiology.

[50]  G. Mies,et al.  Evolution of Brain Infarction after Transient Focal Cerebral Ischemia in Mice , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[51]  Ulrich Dirnagl,et al.  Stroke Research Priorities for the Next Decade – A Representative View of the European Scientific Community , 2006, Cerebrovascular Diseases.

[52]  J. Saver Proposal for a Universal Definition of Cerebral Infarction , 2008, Stroke.

[53]  G. Rosner,et al.  Elevation of Neuroactive Substances in the Cortex of Cats during Prolonged Focal Ischemia , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[54]  Bingren Hu,et al.  Irreversible Translation Arrest in the Reperfused Brain , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[55]  K. Hossmann,et al.  Transient cell depolarization after permanent middle cerebral artery occlusion: An observation by diffusion‐weighted MRI and localized 1H‐MRS , 1994, Magnetic resonance in medicine.

[56]  K. Hossmann,et al.  Cerebral microembolization. I. Pathophysiological studies. , 1977, Archives of neurology.

[57]  K. Hossmann Viability thresholds and the penumbra of focal ischemia , 1994, Annals of neurology.

[58]  W. Schaper,et al.  Collateral Circulation , 1993, Springer US.

[59]  F Viñuela,et al.  Impact of collateral flow on tissue fate in acute ischaemic stroke , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[60]  R. Ojemann,et al.  Thresholds of focal cerebral ischemia in awake monkeys. , 1981, Journal of neurosurgery.

[61]  C. Becker,et al.  On the Hypes and Falls in Neuroprotection: Targeting the NMDA Receptor , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[62]  K. Zülch,et al.  The Cerebral Infarct: Pathology, Pathogenesis, and Computed Tomography , 1985 .

[63]  Joakim Bjorkdahl Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? , 1996 .

[64]  Koroshetz Wj,et al.  Tissue plasminogen activator for acute ischemic stroke. , 1996, The New England journal of medicine.

[65]  M. Norenberg,et al.  The mitochondrial permeability transition in neurologic disease , 2007, Neurochemistry International.

[66]  W. Pulsinelli,et al.  Cerebral Blood Flow Thresholds for mRNA Synthesis After Focal Ischemia and the Effect of MK-801 , 2005, Stroke.

[67]  A. Dunn,et al.  Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. , 2006, Brain : a journal of neurology.

[68]  W. Paschen,et al.  Endoplasmic reticulum stress response and neurodegeneration. , 2005, Cell calcium.

[69]  Hans-Christoph Diener,et al.  NXY-059 for the treatment of acute ischemic stroke. , 2007, The New England journal of medicine.

[70]  DanieleBano,et al.  Ca2+ Signals and Neuronal Death in Brain Ischemia , 2007 .

[71]  A. Buchan,et al.  Apoptosis after experimental stroke: fact or fashion? , 2000, Journal of neurotrauma.

[72]  W. Paschen,et al.  Transient Focal Cerebral Ischemia Induces a Dramatic Activation of Small Ubiquitin-Like Modifier Conjugation , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[73]  G. Mies,et al.  Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. , 1993, Neuroreport.

[74]  A. Strong,et al.  The concepts of thresholds of ischaemia in relation to brain structure and function. , 1977, Journal of clinical pathology. Supplement.

[75]  S. Sensi,et al.  Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. , 2004, Current molecular medicine.

[76]  M. Kaste,et al.  Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II) , 1998, The Lancet.

[77]  W D Heiss,et al.  Functional recovery of cortical neurons as related to degree and duration of ischemia , 1983, Annals of neurology.

[78]  M. Moskowitz,et al.  The Complex Role of Nitric Oxide in the Pathophysiology of Focal Cerebral Ischemia , 1994, Brain pathology.

[79]  M. Kaste,et al.  Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS) , 1995, JAMA.