A Value Ordering Heuristic for Weighted CSP

In this paper, we propose a new value ordering heuristic for weighted constraint satisfaction problems (WCSP) based on the quality of solutions. The H-quality of an assignment estimates its capacity at occurring in solutions of "good" quality. Experiments using limited discrepancy search on random WCSP instances and CELAR benchmarks show that our value ordering always outperforms MinAC in a significant way.

[1]  Hadrien Cambazard,et al.  Identifying and Exploiting Problem Structures Using Explanation-based Constraint Programming , 2005, Constraints.

[2]  F. J. Burkowski Shuffle crossover and mutual information , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Patrice Boizumault,et al.  Combining VNS with constraint programming for solving anytime optimization problems , 2008, Eur. J. Oper. Res..

[4]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[5]  Mohammad Reza Meybodi,et al.  A Self-Organizing Channel Assignment Algorithm: A Cellular Learning Automata Approach , 2003, IDEAL.

[6]  P. A. Geelen,et al.  Dual Viewpoint Heuristics for Binary Constraint Satisfaction Problems , 1992, ECAI.

[7]  P. S. Sastry,et al.  Varieties of learning automata: an overview , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Philippe Refalo,et al.  Impact-Based Search Strategies for Constraint Programming , 2004, CP.

[9]  Mohammad Reza Meybodi,et al.  A Mathematical Framework for Cellular Learning Automata , 2004, Adv. Complex Syst..

[10]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[11]  Simon de Givry,et al.  Radio Link Frequency Assignment , 1999, Constraints.

[12]  Thomas Schiex,et al.  On the Complexity of Compact Coalitional Games , 2009, IJCAI.

[13]  Mohammad Reza Meybodi,et al.  Parallel hardware implementation of cellular learning automata based evolutionary computing (CLA-EC) on FPGA , 2005, 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'05).