Ultra-Fast Stabilizing Model Predictive Control via Canonical Piecewise Affine Approximations

This paper investigates the use of canonical piecewise affine (PWA) functions for approximation and fast implementation of linear MPC controllers. The control law is approximated in an optimal way over a regular simplicial partition of a given set of states of interest. The stability properties of the resulting closed-loop system are analyzed by constructing a suitable PWA Lyapunov function. The main advantage of the proposed approach to the implementation of MPC controllers is that the resulting stabilizing approximate MPC controller can be implemented on chip with sampling times in the order of tens of nanoseconds.

[1]  Alberto Bemporad,et al.  Model Predictive Control Toolbox™ User’s Guide , 2004 .

[2]  Pedro Julián,et al.  Integrated circuit implementation of multi-dimensional piecewise-linear functions , 2010, Digit. Signal Process..

[3]  Thomas Parisini,et al.  A receding-horizon regulator for nonlinear systems and a neural approximation , 1995, Autom..

[4]  Franco Blanchini,et al.  Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[5]  H. Kuhn Simplicial approximation of fixed points. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[7]  Manfred Morari,et al.  Multiparametric Linear Programming with Applications to Control , 2007, Eur. J. Control.

[8]  Tor Arne Johansen,et al.  Hardware Synthesis of Explicit Model Predictive Controllers , 2007, IEEE Transactions on Control Systems Technology.

[9]  James E. Falk,et al.  Delaunay partitions in Rn applied to non-convex programs and vertex/facet enumeration problems , 2005, Comput. Oper. Res..

[10]  Harold W. Kuhn,et al.  Some Combinatorial Lemmas in Topology , 1960, IBM J. Res. Dev..

[11]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[12]  Mircea Lazar,et al.  On infinity norms as Lyapunov functions for piecewise affine systems , 2010, HSCC '10.

[13]  Marco Storace,et al.  Circuit implementation of piecewise-affine functions based on a binary search tree , 2009, 2009 European Conference on Circuit Theory and Design.

[14]  Alberto Bemporad,et al.  Hybrid Toolbox for MATLAB - User's Guide , 2003 .

[15]  Marco Storace,et al.  Digital Circuit Realization of Piecewise-Affine Functions With Nonuniform Resolution: Theory and FPGA Implementation , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  A. Bemporad,et al.  Suboptimal Explicit Receding Horizon Control via Approximate Multiparametric Quadratic Programming , 2003 .

[17]  Javier Echanobe,et al.  Digital Hardware Implementation of High Dimensional Fuzzy Systems , 2007, WILF.

[18]  B. Schutter,et al.  On hybrid systems and closed-loop MPC systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[19]  A.G. Beccuti,et al.  Explicit Hybrid Model Predictive Control of the dc-dcBoost Converter , 2007, 2007 IEEE Power Electronics Specialists Conference.

[20]  Marco Storace,et al.  Digital architectures realizing piecewise‐linear multivariate functions: Two FPGA implementations , 2011, Int. J. Circuit Theory Appl..

[21]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[22]  A. Bemporada,et al.  Squaring the circle : An algorithm for generating polyhedral invariant sets from ellipsoidal ones , 2007 .

[23]  Alberto Bemporad,et al.  Model Predictive Control Tuning by Controller Matching , 2010, IEEE Transactions on Automatic Control.

[24]  A. Bemporad,et al.  Model Predictive Control Design: New Trends and Tools , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[25]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[26]  Roberto Guerrieri,et al.  A Geometric Approach to Maximum-Speed n-Dimensional Continuous Linear Interpolation in Rectangular Grids , 1998, IEEE Trans. Computers.

[27]  Marco Storace,et al.  A method for the approximate synthesis of cellular non‐linear networks—Part 2: Circuit reduction , 2003, Int. J. Circuit Theory Appl..

[28]  Silvio Simani,et al.  High-speed DSP-based implementation of piecewise-affine and piecewise-quadratic fuzzy systems , 2000, Signal Process..

[29]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[30]  Manfred Morari,et al.  Complexity reduction of receding horizon control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[31]  Mato Baotic,et al.  Stabilizing low complexity feedback control of constrained piecewise affine systems , 2005, Autom..

[32]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[33]  Frank J. Christophersen,et al.  Controller complexity reduction for piecewise affine systems through safe region elimination , 2007, 2007 46th IEEE Conference on Decision and Control.

[34]  Alberto Bemporad,et al.  Robust explicit MPC based on approximate multiparametric convex programming , 2004, IEEE Transactions on Automatic Control.

[35]  Lorenzo Fagiano,et al.  Set Membership approximation theory for fast implementation of Model Predictive Control laws , 2009, Autom..

[36]  Ernest S. Kuh,et al.  Solving nonlinear resistive networks using piecewise-linear analysis and simplicial subdivision , 1977 .

[37]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[38]  P. Julián,et al.  High-level canonical piecewise linear representation using a simplicial partition , 1999 .

[39]  Marco Storace,et al.  A method for the approximate synthesis of cellular non‐linear networks—Part 1: Circuit definition , 2003, Int. J. Circuit Theory Appl..

[40]  M. Storace,et al.  FPGA implementation of a new scheme for the circuit realization of PWL functions , 2007, 2007 18th European Conference on Circuit Theory and Design.

[41]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[42]  C. Filippi An Algorithm for Approximate Multiparametric Linear Programming , 2004 .

[43]  Alberto Bemporad,et al.  An MPC design flow for automotive control and applications to idle speed regulation , 2008, 2008 47th IEEE Conference on Decision and Control.

[44]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[45]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[46]  Manfred Morari,et al.  Analysis of discrete-time piecewise affine and hybrid systems , 2002, Autom..

[47]  Panos J. Antsaklis,et al.  Synthesis of uniformly ultimate boundedness switching laws for discrete-time uncertain switched linear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[48]  Alfredo C. Desages,et al.  Orthonormal high-level canonical PWL functions with applications to model reduction , 2000 .