Experimental and theoretical study of the Gouy phase anomaly of light in the focus of microlenses
暂无分享,去创建一个
Myun-Sik Kim | Toralf Scharf | Hans Peter Herzig | Carsten Rockstuhl | Ali Naqavi | Kenneth J. Weible | H. P. Herzig | K. Weible | A. Naqavi | T. Scharf | C. Rockstuhl | Reinhard Völkel | M. Kim | R. Völkel
[1] P. Robinson,et al. The gouy phase shift as a geometrical quantum effect , 1996 .
[2] John M. Tamkin,et al. Observation of the Gouy phase anomaly in astigmatic beams. , 2012, Applied optics.
[3] H. Winful,et al. Physical origin of the Gouy phase shift. , 2001, Optics letters.
[4] Robert W. Boyd,et al. Intuitive explanation of the phase anomaly of focused light beams , 1980 .
[5] H. Herzig,et al. Talbot Images of Wavelength-scale Amplitude Gratings , 2022 .
[6] T. Tyc. Gouy phase for full-aperture spherical and cylindrical waves. , 2012, Optics letters.
[7] G. Brand. A New Millimeter Wave Geometric Phase Demonstration , 2000 .
[8] C. Sheppard. Cylindrical lenses--focusing and imaging: a review [Invited]. , 2013, Applied optics.
[9] D Subbarao,et al. Topological phase in Gaussian beam optics. , 1995, Optics letters.
[10] Hans Peter Herzig,et al. Comparing glass and plastic refractive microlenses fabricated with different technologies , 2006 .
[11] Myun-Sik Kim,et al. Engineering photonic nanojets. , 2011, Optics express.
[12] Myun-Sik Kim,et al. Small-size microlens characterization by multiwavelength high-resolution interference microscopy. , 2010, Optics express.
[13] T. Eiju,et al. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. , 1987, Applied optics.
[14] J. Schwider,et al. Arraytests for microlenses , 1997 .
[15] M. Nemes,et al. Experimental proposal for measuring the Gouy phase of matter waves , 2010, 1012.3910.
[16] H. Rigneault,et al. Imaging the Gouy phase shift in photonic jets with a wavefront sensor. , 2012, Optics letters.
[17] Wenfeng Sun,et al. Complete presentation of the Gouy phase shift with the THz digital holography. , 2013, Optics express.
[18] H. Herzig,et al. Gouy phase anomaly in photonic nanojets , 2011 .
[19] S. Habraken,et al. Geometric phases in astigmatic optical modes of arbitrary order , 2009, 0912.1732.
[20] Myun-Sik Kim,et al. Longitudinal-differential interferometry: direct imaging of axial superluminal phase propagation. , 2012, Optics letters.
[21] Myun-Sik Kim,et al. Phase anomalies in Talbot light carpets of self-images. , 2013, Optics express.
[22] E. Wolf,et al. Principles of Optics (7th Ed) , 1999 .
[24] Hongrui Jiang,et al. Liquid tunable microlenses based on MEMS techniques , 2013, Journal of physics D: Applied physics.
[25] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[26] J. Schwider,et al. Digital wave-front measuring interferometry: some systematic error sources. , 1983, Applied optics.
[27] E. Wolf,et al. The origin of the Gouy phase anomaly and its generalization to astigmatic wavefields , 2010 .
[28] Takaaki Miyashita. International standards for metrology of microlens arrays , 2005, SPIE Optical Metrology.
[29] Mukunda,et al. Bargmann invariant and the geometry of the Güoy effect. , 1993, Physical review letters.
[30] D. Fischer,et al. Generalized Gouy phase for focused partially coherent light and its implications for interferometry. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.
[31] Keren Bergman,et al. Optical interconnection networks for high-performance computing systems , 2012, Reports on progress in physics. Physical Society.