Strain and stress computations in stochastic finite element methods
暂无分享,去创建一个
[1] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[2] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[3] Raul Tempone,et al. An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data , 2007 .
[4] Wilson H. Tang,et al. Probability concepts in engineering planning and design , 1984 .
[5] Tim B. Swartz,et al. Approximating Integrals Via Monte Carlo and Deterministic Methods , 2000 .
[6] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[7] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[8] Knut Petras,et al. On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..
[9] Ning Liu,et al. Spectral stochastic finite element analysis of periodic random thermal creep stress in concrete , 1996 .
[10] Roger G. Ghanem,et al. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..
[11] Roger Ghanem,et al. Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, CDC.
[12] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[13] K. Ritter,et al. The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .
[14] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[15] A. Olsson,et al. On Latin Hypercube Sampling for Stochastic Finite Element Analysis , 1999 .
[16] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[17] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[18] R. Grandhi,et al. Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .
[19] Viktor Winschel,et al. Estimation with Numerical Integration on Sparse Grids , 2006 .
[20] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[21] Habib N. Najm,et al. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..
[22] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[23] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[24] A. W. Wymore,et al. Numerical Evaluation of Multiple Integrals I , 2010 .
[25] Hermann G. Matthies,et al. Numerical Methods and Smolyak Quadrature for Nonlinear Stochastic Partial Differential Equations , 2003 .
[26] Viktor Winschel. Solving, Estimating and Selecting Nonlinear Dynamic Economic Models Without the Curse of Dimensionality , 2005 .
[27] Roger Ghanem,et al. Analysis of Eigenvalues and Modal Interaction of Stochastic Systems , 2005 .
[28] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .