Strain and stress computations in stochastic finite element methods

This paper focuses on the computation of statistical moments of strains and stresses in a random system model where uncertainty is modeled by a stochastic finite element method based on the polynomial chaos expansion. It identifies the cases where this objective can be achieved by analytical means using the orthogonality property of the chaos polynomials and those where it requires a numerical integration technique. To this effect, the applicability and efficiency of several numerical integration schemes are considered. These include the Gauss–Hermite quadrature with the direct tensor product—also known as the Kronecker product—Smolyak's approximation of such a tensor product, Monte Carlo sampling, and the Latin Hypercube sampling method. An algorithm for reducing the dimensionality of integration under a direct tensor product is also explored for optimizing the computational cost and complexity. The convergence rate and algorithmic complexity of all of these methods are discussed and illustrated with the non-deterministic linear stress analysis of a plate. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[2]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[3]  Raul Tempone,et al.  An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data , 2007 .

[4]  Wilson H. Tang,et al.  Probability concepts in engineering planning and design , 1984 .

[5]  Tim B. Swartz,et al.  Approximating Integrals Via Monte Carlo and Deterministic Methods , 2000 .

[6]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[7]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[8]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..

[9]  Ning Liu,et al.  Spectral stochastic finite element analysis of periodic random thermal creep stress in concrete , 1996 .

[10]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[11]  Roger Ghanem,et al.  Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, CDC.

[12]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[13]  K. Ritter,et al.  The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .

[14]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[15]  A. Olsson,et al.  On Latin Hypercube Sampling for Stochastic Finite Element Analysis , 1999 .

[16]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[17]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[18]  R. Grandhi,et al.  Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .

[19]  Viktor Winschel,et al.  Estimation with Numerical Integration on Sparse Grids , 2006 .

[20]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[21]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[22]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[23]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[24]  A. W. Wymore,et al.  Numerical Evaluation of Multiple Integrals I , 2010 .

[25]  Hermann G. Matthies,et al.  Numerical Methods and Smolyak Quadrature for Nonlinear Stochastic Partial Differential Equations , 2003 .

[26]  Viktor Winschel Solving, Estimating and Selecting Nonlinear Dynamic Economic Models Without the Curse of Dimensionality , 2005 .

[27]  Roger Ghanem,et al.  Analysis of Eigenvalues and Modal Interaction of Stochastic Systems , 2005 .

[28]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .