Temporal, spatial and thermal features of 3-D Rayleigh-Bénard convection by a least-squares finite element method

Numerical solutions of 3-D time-dependent Rayleigh-Benard convection are presented in this work. The temporal, spatial and thermal features of convective patterns are studied for four different geometric aspect ratios, 2:1:2, 4:1:4, 5:1:5 and 3.5:1:2.1 at supercritical Rayleigh numbers Ra = 8 × 103, 2.4 × 104 and Prandtl numbers Pr = 0.71, 2.5. Several physical phenomena, such as multicellular flow pattern, oscillatory transient solution, ‘T-shaped’ rolls at the ends of a rectangular box, and roll alignment, are observed in our simulations. The numerical technique is based on an implicit, fully coupled, and time-accurate method, which consists of the Crank-Nicolson scheme for time integration, Newton's method for the convective terms with extensive linearization steps, and a least-squares finite element method. A matrix-free algorithm of the Jacobi conjugate gradient method is implemented to solve the symmetric, positive definite linear system of equations.

[1]  P. Kolodner,et al.  Rayleigh-Bénard convection in an intermediate-aspect-ratio rectangular container , 1986, Journal of Fluid Mechanics.

[2]  Pavel B. Bochev,et al.  Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations , 1995 .

[3]  M. Gunzburger,et al.  Analysis of least squares finite element methods for the Stokes equations , 1994 .

[4]  Li Q. Tang,et al.  TRANSIENT SOLUTIONS BY A LEAST-SQUARES FINITE-ELEMENT METHOD AND JACOBI CONJUGATE GRADIENT TECHNIQUE , 1995 .

[5]  G. Guj,et al.  The Rayleigh–Bénard problem in intermediate bounded domains , 1993, Journal of Fluid Mechanics.

[6]  T. H. Tsang,et al.  AN EFFICIENT LEAST-SQUARES FINITE ELEMENT METHOD FOR INCOMPRESSIBLE FLOWS AND TRANSPORT PROCESSES , 1995 .

[7]  F. Stella,et al.  A vorticity-velocity method for the numerical solution of 3D incompressible flows , 1993 .

[8]  Louis A. Povinelli,et al.  Large-scale computation of incompressible viscous flow by least-squares finite element method , 1994 .

[9]  Urmila Ghia,et al.  A direct algorithm for solution of incompressible three-dimensional unsteady Navier-Stokes equations , 1987 .

[10]  B. Jiang,et al.  Least-squares finite element method for fluid dynamics , 1990 .

[11]  H. Oertel,et al.  Three-dimensional thermal cellular convection in rectangular boxes , 1988, Journal of Fluid Mechanics.

[12]  Kwang-tzu Yang,et al.  Wavenumber selection for Rayleigh—Bénard convection in a small aspect ratio box , 1992 .

[13]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[14]  Stephen H. Davis,et al.  Convection in a box: linear theory , 1967, Journal of Fluid Mechanics.

[15]  G. F. Carey,et al.  Error estimates for least-squares mixed finite elements , 1994 .

[16]  M. El-Genk,et al.  Buoyancy induced instability of laminar flows in vertical annuli—I. Flow visualization and heat transfer experiments , 1990 .

[17]  CaiZhiqiang,et al.  First-Order System Least Squares for Second-Order Partial Differential Equations , 1997 .

[18]  Louis A. Povinelli,et al.  Theoretical study of the incompressible Navier-Stokes equations by the least-squares method , 1994 .

[19]  J. Zierep,et al.  Recent developments in theoretical and experimental fluid mechanics : compressible and incompressible flows , 1979 .

[20]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[21]  M. Gunzburger,et al.  Accuracy of least-squares methods for the Navier-Stokes equations , 1993 .

[22]  T. H. Tsang,et al.  A LEAST-SQUARES FINITE ELEMENT METHOD FOR DOUBLY-DIFFUSIVE CONVECTION , 1994 .

[23]  E. Koschmieder,et al.  Bénard cells and Taylor vortices , 1993 .

[24]  R. L. Frederick,et al.  Spatial and thermal features of three dimensional Rayleigh-Bénard convection , 1994 .

[25]  I. Catton The effect of insulating vertical walls on the onset of motion in a fluid heated from below , 1972 .

[26]  Li Q. Tang,et al.  A least‐squares finite element method for time‐dependent incompressible flows with thermal convection , 1993 .

[27]  B. Jiang A least‐squares finite element method for incompressible Navier‐Stokes problems , 1992 .

[28]  K. Stork,et al.  Convection in boxes: experiments , 1972, Journal of Fluid Mechanics.

[29]  H. Oertel,et al.  Influence of Initial and Boundary Conditions on Benard Convection , 1979 .

[30]  M. P. Arroyo,et al.  Rayleigh-Bénard convection in a small box: spatial features and thermal dependence of the velocity field , 1992, Journal of Fluid Mechanics.

[31]  T. H. Tsang,et al.  Transient solutions for three‐dimensional lid‐driven cavity flows by a least‐squares finite element method , 1995 .

[32]  J. Z. Zhu,et al.  The finite element method , 1977 .